892.

Problem 55.50 (RHK)

We have to calculate (a) the rate at which the Sun is generating neutrinos. Assume that the energy production is entirely by the proton-proton cycle. (b) We have to find the rate with which the solar neutrinos impinge the Earth.

Solution:

(a)

The Sun radiates energy at the rate of 3.9×10^{26} W. In a p-p cycle there is a fusion of four protons and two electrons to form one alpha particle, two neutrinos and six gamma ray photons. That is the p-p nuclear process is

 $4^{1}\text{H} + 2e \rightarrow {}^{4}\text{He} + 2\nu + 6\gamma.$

The energy released in the p-p cycle is 26.7 MeV. Assuming that the energy production is entirely by the proton-proton cycle, we find that the number of such nuclear processes that are taking place in the Sun per second is $=\frac{3.9\times10^{26} \text{ J s}^{-1}}{26.7\times1.6\times10^{-13} \text{ J}}=9.129\times10^{37} \text{ p-p cycles per second.}$

As 2 neutrinos are produced per p-p cycle, the rate at which the Sun is generating neutrinos is $= 2 \times 9.129 \times 10^{37}$ neutrinos per second $= 1.83 \times 10^{38}$ neutrinos per second.

(b)

The mean orbital radius of the Earth is 1.50×10^{11} m, and the mean radius of the Earth is 6.37×10^{6} m. Therefore, the rate with which the solar neutrinos impinge the Earth is

$$= \frac{1.83 \times 10^{38} \times \pi \times (6.37 \times 10^6)^2}{4\pi \times (1.50 \times 10^{11})^2}$$
 neutrinos per second
= 8.25×10^{28} neutrinos per second.