Problem 55.44 (RHK)

The Sun has a mass of 2.0×10^{30} kg and radiates energy at the rate of 3.9×10^{26} W. (a) We have to find the rate with which the mass of the Sun is decreasing. (b) We have to find the fraction of the original mass of the Sun that it has lost in this way since it began to burn hydrogen 4.5×10^9 y ago.

Solution:

(a)

The Sun has a mass of 2.0×10^{30} kg and radiates energy at the rate of 3.9×10^{26} W. We use the Einstein's massenergy relation for calculating the rate of decrease in mass of the Sun.

$$\frac{dM_{\text{sun}}}{dt} = \frac{3.9 \times 10^{26} \text{ W}}{c^2} = \frac{3.9 \times 10^{26} \text{ J s}^{-1}}{\left(3 \times 10^8 \text{ m s}^{-1}\right)^2}$$
$$= 4.33 \times 10^9 \text{ kg s}^{-1}.$$

(b)

The mass lost by the Sun since it began to radiate 4.5×10^9 y ago will be

$$\Delta M_{\text{sun}} = 4.5 \times 10^9 \times 3.156 \times 10^7 \times 4.33 \times 10^9 \text{ kg}$$

= $6.15 \times 10^{26} \text{ kg}$.

The fraction of the original mass of the Sun lost till now will therefore be

$$\frac{\Delta M_{\text{sun}}}{M_{\text{sun}} + \Delta M_{\text{sun}}}; \frac{\Delta M_{\text{sun}}}{M_{\text{sun}}} = \frac{6.15 \times 10^{26} \text{ kg}}{2.0 \times 10^{30} \text{ kg}} = 3.1 \times 10^{-4}.$$

