Problem 55.41 (RHK)

We have to show that the energy released when three alpha particles fuse to form ¹²C is 7.27 MeV. The atomic mass of ⁴He is 4.002603 u, and of ¹²C is 12.000000 u.

Solution:

The energy that will be released when three alpha particles fuse to form ¹²C can be calculated from the atomic mass of ¹²C and the atomic mass of ⁴He. The energy release will be the energy equivalent to the difference in mass of three ⁴He atoms and one ¹²C. That is

$$(3m(^{4}\text{He}) - m(^{12}\text{C}))c^{2} = (3 \times 4.002603 - 12.000000) \text{ u}c^{2}$$

= 0.007809 \text{ u}c^{2}
= 0.007809 \times 931.5 \text{ MeV}
= 7.274 \text{ MeV}.