882.

Problem 55.38 (RHK)

We have to calculate the Coulomb barrier height for two ${ }^{7} \mathrm{Li}$ nuclei, fired at each other with the same initial kinetic energy K.

Solution:

Using the empirical relation

$$
R=R_{0}(A)^{1 / 3}, R_{0}=1.2 \times 10^{-15} \mathrm{~m},
$$

we will determine the radius of ${ }^{7} \mathrm{Li}$ nucleus.

$$
R_{\gamma_{\mathrm{Li}}}=1.2 \times(7)^{1 / 3} \mathrm{fm}=2.295 \times 10^{-15} \mathrm{~m} .
$$

We assume that the two nuclei of ${ }^{7} \mathrm{Li}$ which are approaching each other with equal kinetic energy K are able to come to a stop when they are separated by $2 R_{\gamma_{\mathrm{Li}}}$.

The height of their Coulomb barrier will be

$$
\begin{aligned}
U_{\text {coulomb }} & =\frac{(3 e)^{2}}{4 \pi \varepsilon_{0} \times\left(2 R_{7_{\mathrm{Li}}}\right)} \\
& =\frac{\left(8.99 \times 10^{9}\right) \times\left(3 \times 1.6 \times 10^{-19}\right)^{2}}{2 \times 2.295 \times 10^{-15}} \mathrm{~J} \\
& =45.126 \times 10^{-14} \mathrm{~J} \\
& =\frac{45.126 \times 10^{-14}}{1.6 \times 10^{-13}} \mathrm{MeV}=2.82 \mathrm{MeV} .
\end{aligned}
$$

The two ${ }^{7} \mathrm{Li}$ nuclei will be able to overcome the
Coulomb barrier height if they approach each other with kinetic energy

$$
K=\frac{U_{\text {coulomb }}}{2}=1.41 \mathrm{MeV} \text {. }
$$

