881.

Problem 55.35 (RHK)

We have to calculate the height of the Coulomb barrier for the head-on collision of two protons. The effective radius of a proton may be taken to be 0.80 fm.

Solution:

We will calculate the height of the Coulomb barrier for the head-on collision of two protons, assuming that the effective radius of a proton may be taken to be 0.80 fm.

$$U_{\text{coulomb}} = \frac{e^2}{4\pi\varepsilon_0 (2r)}$$

= $\frac{(8.99 \times 10^9) \times (1.6 \times 10^{-19})^2}{(2 \times 0.80 \times 10^{-15})}$ J
= 14.384×10^{-14} J = $\frac{14.384 \times 10^{-14}}{1.6 \times 10^{-13}}$ MeV
= 899 keV.