881.

Problem 55.35 (RHK)

We have to calculate the height of the Coulomb barrier for the head-on collision of two protons. The effective radius of a proton may be taken to be 0.80 fm .

Solution:

We will calculate the height of the Coulomb barrier for the head-on collision of two protons, assuming that the effective radius of a proton may be taken to be 0.80 fm .

$$
\begin{aligned}
U_{\text {coulomb }} & =\frac{e^{2}}{4 \pi \varepsilon_{0}(2 r)} \\
& =\frac{\left(8.99 \times 10^{9}\right) \times\left(1.6 \times 10^{-19}\right)^{2}}{\left(2 \times 0.80 \times 10^{-15}\right)} \mathrm{J} \\
= & 14.384 \times 10^{-14} \mathrm{~J}=\frac{14.384 \times 10^{-14}}{1.6 \times 10^{-13}} \mathrm{MeV} \\
& =899 \mathrm{keV} .
\end{aligned}
$$

