877.

Problem 55.31 (RHK)

One possible method of revealing the presence of concealed nuclear weapons is to detect the neutrons emitted in the spontaneous fission of 240 Pu in the warhead. In an actual trial, a neutron detector of area 2.5 m², carried on a helicopter, measured a neutron flux of 4.0 s⁻¹ at a distance of 35 m from a missile warhead. We have to estimate the mass of 240 Pu in the warhead. The half-life for spontaneous fission in 240 Pu is 1.34×10^{11} y and 2.5 neutrons, on the average, are emitted per fission.

Solution:

The half-life for spontaneous fission in 240 Pu is 1.34×10^{11} y and 2.5 neutrons, on the average, are emitted per fission. The disintegration constant of 240 Pu will therefore be

$$\lambda = \frac{\ln 2}{1.34 \times 10^{11} \times 3.156 \times 10^7 \text{ s}} = 1.64 \times 10^{-19} \text{ s}^{-1}.$$

Let the warhead contain m g of ²⁴⁰Pu. The number of ²⁴⁰Pu nuclides in m g will be

$$N = \frac{6.02 \times 10^{23} \times m}{240} = 2.51 \times 10^{21} \times m.$$

It is given that on an average 2.5 neutrons are emitted per fission of ²⁴⁰Pu nuclide. Therefore, rate of neutron emission of neutrons from *m* g of ²⁴⁰Pu will be $R_{\text{neutron}} = 2.5\lambda N = 2.5 \times 1.64 \times 10^{-19} \times 2.51 \times 10^{21} \times m \text{ s}^{-1}$ $= 10.29 \times 10^2 \times m \text{ s}^{-1}.$

At a distance of 35 m from the missile warhead, a neutron detector of area 2.5 m² measures a neutron flux of 4.0 s⁻¹. We can, therefore, obtain the amount of 240 Pu in g from the equation

$$\frac{R_{\text{neutron}} \times 2.5 \text{ m}^2}{4\pi (35 \text{ m})^2} = 4.0 \text{ s}^{-1},$$

or

$$\frac{10.29 \times 10^2 \times m \times 2.5 \text{ s}^{-1}}{4\pi (35)^2} = 4.0 \text{ s}^{-1},$$

or

$$m = \frac{4.0 \times 4\pi (35)^2}{10.29 \times 10^2 \times 2.5} = 23.9.$$

The amount of 240 Pu in the warhead is 23.9 g.

