868.

Problem 55.17 (RHK)

Assume that just after the fission of ${ }^{236} \mathrm{U}^{*}$ according to the reaction

$$
{ }^{236} \mathrm{U}^{*} \rightarrow{ }^{140} \mathrm{Xe}+{ }^{94} \mathrm{Sr}+2 \mathrm{n}
$$

the resulting ${ }^{140} \mathrm{Xe}$ and ${ }^{94} \mathrm{Sr}$ nuclei are just touching at their surfaces. (a) Assuming the nuclei to be spherical, we have to calculate the Coulomb potential energy (in MeV) of repulsion between the two fragments. (b) We have to compare this energy with the energy released in a typical fission process. We have to answer in what form this energy will ultimately appear in the laboratory.

Solution:

(a)

The fission of ${ }^{236} \mathrm{U}^{*}$ is assumed to place according to the reaction

$$
{ }^{236} \mathrm{U}^{*} \rightarrow{ }^{140} \mathrm{Xe}+{ }^{94} \mathrm{Sr}+2 \mathrm{n} .
$$

We consider the situation when the resulting ${ }^{140} \mathrm{Xe}$ and ${ }^{94} \mathrm{Sr}$ nuclei are just touching at their surfaces. We will
calculate the radii of ${ }^{140} \mathrm{Xe}$ and ${ }^{94} \mathrm{Sr}$ nuclides using the empirical relation

$$
\begin{aligned}
& r=r_{0} A^{1 / 3}, \\
& r_{0}=1.2 \times 10^{-15} \mathrm{~m} .
\end{aligned}
$$

The radius of the ${ }^{140} \mathrm{Xe}$ nuclide will therefore be

$$
\begin{aligned}
r_{140} & =1.2 \times(140)^{1 / 3} \times 10^{-15} \mathrm{~m} \\
& =6.23 \times 10^{-15} \mathrm{~m} .
\end{aligned}
$$

And, the radius of the ${ }^{94} \mathrm{Sr}$ nuclide will be

$$
\begin{aligned}
r_{{ }_{4 \mathrm{sr}}} & =1.2 \times(94)^{1 / 3} \times 10^{-15} \mathrm{~m} \\
& =5.46 \times 10^{-15} \mathrm{~m} .
\end{aligned}
$$

The atomic number of ${ }^{140} \mathrm{Xe}$ nuclide is 54 and the atomic number of ${ }^{94} \mathrm{Sr}$ nuclide is 38 . Therefore, the Coulomb potential energy between ${ }^{140} \mathrm{Xe}$ and ${ }^{94} \mathrm{Sr}$ nuclides, assuming that these nuclides are spherical and are just touching at their surfaces, will be

$$
\begin{aligned}
U & =\frac{(54 e) \times(38 e)}{4 \pi \varepsilon_{0}\left((6.23+5.46) \times 10^{-15}\right)} \mathrm{J} \\
& =\frac{8.99 \times 10^{9} \times 54 \times 38 \times\left(1.6 \times 10^{-19}\right)^{2}}{11.69 \times 10^{-15}} \mathrm{~J} \\
& =\frac{8.99 \times 10^{9} \times 54 \times 38 \times\left(1.6 \times 10^{-19}\right)^{2}}{11.69 \times 10^{-15} \times 1.6 \times 10^{-13}} \mathrm{MeV} \\
& =252 \mathrm{MeV} .
\end{aligned}
$$

(b)

The energy released in a typical fission process is about 200 MeV . This energy appears mainly in the laboratory as the kinetic energies of the fission neutrons.

