Problem 55.15 (RHK)

Consider the fission of ${ }^{238} \mathrm{U}$ by fast neutrons. In one fission event no neutrons were emitted and the final stable end products, after the beta decay of the primary fission fragments, were ${ }^{140} \mathrm{Ce}$ and ${ }^{99} \mathrm{Ru}$. We have to answer the following: (a) How many beta-decay events were there in the two beta-decay chains, considered together? (b) We have to calculate Q. The relevant atomic masses are ${ }^{238} \mathrm{U} \quad 238.050784 \mathrm{u} \quad{ }^{140} \mathrm{Ce} \quad 139.905433 \mathrm{u}$ n $\quad 1.008665$ u $\quad{ }^{99} \mathrm{Ru} \quad 98.905939$ u.

Solution:

We consider a fission of ${ }^{238} \mathrm{U}$ by fast neutrons in which no neutrons were emitted. The final stable end products, after the beta-decay of the primary fission fragments, are ${ }^{140} \mathrm{Ce}$ and ${ }^{99} \mathrm{Ru}$.
(a)

We note that as the atomic number of uranium, U , is 92 , the conservation of charge tells us that the total
combined number of protons in the primary fission fragments of the ${ }^{238} \mathrm{U}$ nuclide will also be 92 .

The atomic number of cerium, Ce , is 58 and that of ruthenium, Ru , is 44 the combined number of protons in the Ce and Ru nuclides will be 102 . Therefore, a total of 10 beta-decays would have taken place for 10 neutrons to have changed into 10 protons by emission of 10 electrons by beta emissions.
(b)

We will calculate the Q value for the fission by considering the effective nuclear process

$$
\mathrm{n}+{ }^{238} \mathrm{U} \rightarrow{ }^{140} \mathrm{Ce}+{ }^{99} \mathrm{Ru}+10 e^{-}+10 \bar{v} .
$$

As we use the atomic masses instead of the masses of the nuclides, the Q will be given by

$$
\begin{aligned}
Q & =\left(m_{\mathrm{n}}+m_{238 \mathrm{U}}-m_{{ }^{140} \mathrm{Ce}}-m_{99} \mathrm{Ru}\right. \\
&) c^{2} \\
& =(1.008665+238.050784-139.905433-98.905939) \mathrm{u} c^{2} \\
& =0.248077 \mathrm{u} c^{2} \\
& =0.248077 \times 931.5 \mathrm{MeV}=231 \mathrm{MeV} .
\end{aligned}
$$

