## Problem 55.14 (RHK)

<sup>238</sup>Np has a barrier energy for fission of 4.2 MeV. To remove a neutron from this nuclide requires an energy expenditure of 5.0 MeV. We have to answer whether <sup>237</sup>Np is fissionable by thermal neutrons.

## **Solution:**

We want to answer whether <sup>237</sup> Np nuclide is fissionable by thermal neutrons. When a thermal neutron, kinetic energy nearly zero, is absorbed by a <sup>237</sup> Np nuclide, the nuclide <sup>238</sup> Np is formed in an excited state. As the binding energy of a neutron, which is alternatively defined as the energy required to remove a neutron from <sup>238</sup> Np nuclide, is 5.0 MeV, when a thermal neutron is absorbed by a <sup>237</sup> Np nuclide the nuclide <sup>238</sup> Np will be in an excited state with excitation energy of 5.0 MeV. The barrier energy for fission of <sup>238</sup> Np nuclide is 4.2 MeV. Therefore, the energy of the <sup>238</sup> Np nuclide formed on absorption of a thermal neutron is more than the barrier energy for fission. Therefore, <sup>237</sup>Np nuclide is fissionable by absorption of thermal neutrons.

