862.

Problem 55.3 (RHK)

We have to answer the following:

(a) How many atoms are contained in 1.00 kg of pure 235 U? (b) How much energy, in joules, is produced by the complete fissioning of 1.00 kg of 235 U? We may assume Q = 200 MeV. (c) For how many years would this energy light a 100-W lamp?

Solution:

(a)

The number of 235 U atoms in 1.00 kg of pure 235 U

will be

$$N = \frac{6.02 \times 10^{23} \times 10^3 \text{ g}}{235 \text{ g}} = 2.56 \times 10^{24}.$$

(b)

It is given that energy released by fission per 235 U nucleus is 200 MeV. Therefore, the total energy, in joules, produced by complete fissioning of 1.00 kg of pure 235 U, or 2.56×10^{24} 235 U atoms, will be

$$E = 2.56 \times 10^{24} \times 200 \times 1.6 \times 10^{-13} \text{ J}$$
$$= 8.197 \times 10^{13} \text{ J}.$$

(c)

The total time for which a light bulb of 100 W will glow with this energy will be

$$t = \frac{8.197 \times 10^{13} \text{ J}}{100 \text{ J s}^{-1}} = 8.197 \times 10^{11} \text{ s}$$
$$= \frac{8.197 \times 10^{11} \text{ s}}{3.156 \times 10^7 \text{ s/y}}$$
$$= 2.59 \times 10^4 \text{ y}.$$