859.

Problem 54.86(RHK)

The nuclide ${ }^{208} \mathrm{~Pb}$ is "doubly magic" in that both its proton number $Z(=82)$ and its neutron number $N(=126)$ represent filled nucleon shells. An additional proton would yield ${ }^{209} \mathrm{Bi}$ and an additional neutron would yield ${ }^{209} \mathrm{~Pb}$. These "extra" nucleons should be easier to remove than a proton or a neutron from the filled shells of ${ }^{208} \mathrm{~Pb}$.
(a) We have to calculate the energy required to move the "extra" proton from ${ }^{209} \mathrm{Bi}$ and compare it with the energy required to remove a proton from the filled proton shell of ${ }^{208} \mathrm{~Pb}$.
(b) We have to calculate the energy required to remove the "extra" neutron from ${ }^{209} \mathrm{~Pb}$ and compare it with the energy required to remove a neutron from the filled neutron shell of ${ }^{208} \mathrm{~Pb}$. We have to answer whether our results agree with expectation. Needed atomic mass data is given in the following table:

Nuclide	Z	N	Atomic Mass (u)
${ }^{209} \mathrm{Bi}$	$82+1$	126	208.980374
${ }^{208} \mathrm{~Pb}$	82	126	207.97627
${ }^{207} \mathrm{Tl}$	$82-1$	126	206.977404
${ }^{209} \mathrm{~Pb}$	82	$126+1$	208.981065
${ }^{207} \mathrm{~Pb}$	82	$126-1$	206.975872

The masses of the proton and the neutron are 1.007276 u and 1.008665 u , respectively.

Solution:

(a)

We have to calculate the energy required to move the "extra" proton from ${ }^{209} \mathrm{Bi}$ and compare it with the energy required to remove a proton from the filled proton shell of ${ }^{208} \mathrm{~Pb}$.

The energy required to move the "extra" proton from ${ }^{209} \mathrm{Bi}$ can be calculated by considering the nuclear process

$$
{ }^{209} \mathrm{Bi} \rightarrow{ }^{208} \mathrm{~Pb}+\mathrm{p} .
$$

It will be equal to
$\left(\left(m_{208 \mathrm{~Pb}}-82 m_{e}+m_{\mathrm{P}}\right)-\left(m_{299}-83 m_{e}\right)\right) c^{2}$
$=(207.976627+1.007276+0.51 / 931.5-208.980374) u c^{2}$
$=0.004080 \mathrm{u}^{2} \mathrm{c}^{2}=0.004080 \times 931.5 \mathrm{MeV}=3.80 \mathrm{MeV}$.

We calculate next the energy required to remove a proton from the filled proton shell of ${ }^{208} \mathrm{~Pb}$.

It will be given by the nuclear process ${ }^{208} \mathrm{~Pb} \rightarrow{ }^{207} \mathrm{Tl}+\mathrm{p}$.

It will be equal to
$\left(\left(m_{207 \mathrm{~T} 1}-81 m_{e}+m_{\mathrm{P}}\right)-\left(m_{220 \mathrm{P} \mathrm{Pb}}-82 m_{e}\right)\right) c^{2}$
$=(206.977404+1.007276+0.51 / 931.5-207.976627) u c^{2}$
$=0.008107 \mathrm{u}^{2}=0.008107 \times 931.5 \mathrm{MeV}=7.55 \mathrm{MeV}$.
(b)

We have to calculate the energy required to remove the "extra" neutron from ${ }^{209} \mathrm{~Pb}$ and compare it with the energy required to remove a neutron from the filled neutron shell of ${ }^{208} \mathrm{~Pb}$.

The energy required to remove the "extra" neutron from ${ }^{209} \mathrm{~Pb}$ can be calculated from the nuclear process ${ }^{209} \mathrm{~Pb} \rightarrow{ }^{208} \mathrm{~Pb}+\mathrm{n}$.

It will be equal to
$\left(\left(m_{208 \mathrm{~Pb}}-82 m_{e}+m_{\mathrm{n}}\right)-\left(m_{209 \mathrm{~Pb}}-82 m_{e}\right)\right) c^{2}$
$=(207.976627+1.008665-208.981065) u c^{2}$
$=0.00423 u c^{2}=0.00423 \times 931.5 \mathrm{MeV}=3.94 \mathrm{MeV}$.

The energy required to remove a neutron from the filled neutron shell of ${ }^{208} \mathrm{~Pb}$ can be calculated from the nuclear process

$$
{ }^{208} \mathrm{~Pb} \rightarrow{ }^{207} \mathrm{~Pb}+\mathrm{n} .
$$

It will be equal to
$\left(\left(m_{207 \mathrm{~Pb}}-82 m_{e}+m_{\mathrm{n}}\right)-\left(m_{208 \mathrm{~Pb}}-82 m_{e}\right)\right) c^{2}$
$=(206.975872+1.008665-207.976627) u c^{2}$
$=0.00791 \mathrm{u}^{2}=0.00791 \times 931.5 \mathrm{MeV}=7.37 \mathrm{MeV}$.

We note that our results agree with expectation that because the nuclide ${ }^{208} \mathrm{~Pb}$ is "doubly magic" in that both its proton number $Z(=82)$ and its neutron number
$N(=126)$ represent filled nucleon shells, protons are more tightly bound in it than in the nuclide ${ }^{209} \mathrm{Bi}$, and that neutrons are more tightly bound in it than in the nuclide ${ }^{209} \mathrm{~Pb}$.

