859.

Problem 54.86 (RHK)

The nuclide ²⁰⁸Pb is "doubly magic" in that both its proton number Z(=82) and its neutron number N(=126) represent filled nucleon shells. An additional proton would yield ²⁰⁹Bi and an additional neutron would yield ²⁰⁹Pb. These "extra" nucleons should be easier to remove than a proton or a neutron from the filled shells of ²⁰⁸Pb.

(a) We have to calculate the energy required to move the "extra" proton from ²⁰⁹Bi and compare it with the energy required to remove a proton from the filled proton shell of ²⁰⁸Pb.

(b) We have to calculate the energy required to remove the "extra" neutron from ²⁰⁹ Pb and compare it with the energy required to remove a neutron from the filled neutron shell of ²⁰⁸ Pb. We have to answer whether our results agree with expectation. Needed atomic mass data is given in the following table:

Nuclide	Ζ	N	Atomic Mass (u)
²⁰⁹ Bi	82 + 1	126	208.980374
²⁰⁸ Pb	82	126	207.976627
207 T1	82 - 1	126	206.977404
209 Pb	82	126 + 1	208.981065
²⁰⁷ Pb	82	126 - 1	206.975872

The masses of the proton and the neutron are 1.007276 u and 1.008665 u, respectively.

Solution:

(a)

We have to calculate the energy required to move the "extra" proton from ²⁰⁹Bi and compare it with the energy required to remove a proton from the filled proton shell of ²⁰⁸Pb.

The energy required to move the "extra" proton from ²⁰⁹Bi can be calculated by considering the nuclear

process

 $^{209}\text{Bi} \rightarrow ^{208}\text{Pb+p}$.

It will be equal to

$$\left(\left(m_{208}_{\text{Pb}} - 82m_e + m_{\text{P}}\right) - \left(m_{209}_{\text{Bi}} - 83m_e\right)\right)c^2$$

= $\left(207.976627 + 1.007276 + 0.51/931.5 - 208.980374\right)uc^2$
= $0.004080 uc^2 = 0.004080 \times 931.5 \text{ MeV} = 3.80 \text{ MeV}.$

We calculate next the energy required to remove a proton from the filled proton shell of 208 Pb. It will be given by the nuclear process 208 Pb $\rightarrow ^{207}$ Tl+p. It will be equal to

$$\left(\left(m_{207}_{\text{Tl}} - 81m_e + m_{\text{P}}\right) - \left(m_{208}_{\text{Pb}} - 82m_e\right)\right)c^2$$

= $\left(206.977404 + 1.007276 + 0.51/931.5 - 207.976627\right)uc^2$
= $0.008107 uc^2 = 0.008107 \times 931.5$ MeV=7.55 MeV.

(b)

We have to calculate the energy required to remove the "extra" neutron from ²⁰⁹Pb and compare it with the energy required to remove a neutron from the filled neutron shell of ²⁰⁸Pb.

The energy required to remove the "extra" neutron from 209 Pb can be calculated from the nuclear process 209 Pb $\rightarrow ^{208}$ Pb+n.

It will be equal to

$$\left(\left(m_{208}_{Pb} - 82m_e + m_n\right) - \left(m_{209}_{Pb} - 82m_e\right)\right)c^2$$

= $\left(207.976627 + 1.008665 - 208.981065\right)uc^2$
= $0.00423 uc^2 = 0.00423 \times 931.5 \text{ MeV} = 3.94 \text{ MeV}.$

The energy required to remove a neutron from the filled neutron shell of ²⁰⁸Pb can be calculated from the nuclear process

 208 Pb $\rightarrow ^{207}$ Pb + n.

It will be equal to

$$\left(\left(m_{207}_{\text{Pb}} - 82m_e + m_n\right) - \left(m_{208}_{\text{Pb}} - 82m_e\right)\right)c^2$$

$$= (206.975872 + 1.008665 - 207.976627)uc^2$$

$$= 0.00791 uc^2 = 0.00791 \times 931.5 \text{ MeV} = 7.37 \text{ MeV}.$$

We note that our results agree with expectation that because the nuclide ²⁰⁸Pb is "doubly magic" in that both its proton number Z(=82) and its neutron number N(=126) represent filled nucleon shells, protons are more tightly bound in it than in the nuclide ²⁰⁹Bi, and that neutrons are more tightly bound in it than in the nuclide ²⁰⁹Pb.

