857.

Problem 43.79P (HRW)

We have to calculate (a) the energy needed to remove a proton from a ${ }^{121} \mathrm{Sb}$ nucleus, and (b) the energy needed to remove a proton from the resulting ${ }^{120} \mathrm{Sn}$ nucleus. The needed atomic masses are

Solution:

(a)

We have to calculate the energy needed to remove a proton from a ${ }^{121} \mathrm{Sb}$ nucleus. We note that the atomic number of antimony ${ }^{121} \mathrm{Sb}$ is 51 and therefore an antimony atom has 51 electrons.

The atomic number of ${ }^{120} \mathrm{Sn}$ is 50 and so a ${ }^{120} \mathrm{Sn}$ atom contains 50 electrons.

Therefore, the energy required for removing a proton from a ${ }^{121} \mathrm{Sb}$ nucleus will be

$$
\begin{aligned}
-Q & =\left(\left(m\left({ }^{120} \mathrm{Sn}\right)-50 m_{e}\right)+m(p)-\left(m\left({ }^{121} \mathrm{Sb}\right)-51 m_{e}\right)\right) c^{2} \\
& =\left(m\left({ }^{120} \mathrm{Sn}\right)+m\left({ }^{1} \mathrm{H}\right)-m\left({ }^{121} \mathrm{Sb}\right)\right) c^{2} \\
& =(119.9022+1.007825-120.9038) \mathrm{u} c^{2} \\
& =0.006225 \mathrm{u} c^{2}=0.006225 \mathrm{u} c^{2} \times 931.5 \mathrm{MeV} \\
& =5.798 \mathrm{MeV} .
\end{aligned}
$$

(b)

We have to calculate the energy needed to remove a proton from a ${ }^{120} \mathrm{Sn}$ nucleus. We note that the atomic number of indium ${ }^{19}$ In is 49 and so an ${ }^{119}$ In atom contains 49 electrons.

Therefore, the energy required for removing a proton from a ${ }^{120} \mathrm{Sn}$ nucleus will be

$$
\begin{aligned}
-Q & =\left(\left(m\left({ }^{119} \mathrm{In}\right)-49 m_{e}\right)+m(p)-\left(m\left({ }^{120} \mathrm{Sn}\right)-50 m_{e}\right)\right) c^{2} \\
& =\left(m\left({ }^{119} \mathrm{In}\right)+m\left({ }^{1} \mathrm{H}\right)-m\left({ }^{120} \mathrm{Sn}\right)\right) c^{2} \\
& =(118.9058+1.007825-119.9022) \mathrm{u} c^{2} \\
& =0.011425 \mathrm{u} c^{2}=0.011425 \mathrm{u} c^{2} \times 931.5 \mathrm{MeV} \\
& =10.639 \mathrm{MeV} .
\end{aligned}
$$

We note that ${ }^{120} \mathrm{Sn}$ nucleus contains 50 protons, which is a magic nucleon number. Therefore, ${ }^{120} \mathrm{Sn}$ nucleus,
which requires 10.6 MeV for removing a proton form it , is more stable than ${ }^{121} \mathrm{Sb}$ nucleus, which requires 5.8 MeV for removing a proton from it.

