857.

Problem 43.79P (HRW)

We have to calculate (a) the energy needed to remove a proton from a ¹²¹Sb nucleus, and (b) the energy needed to remove a proton from the resulting ¹²⁰Sn nucleus. The needed atomic masses are

Solution:

(a)

We have to calculate the energy needed to remove a proton from a ¹²¹Sb nucleus. We note that the atomic number of antimony ¹²¹Sb is 51 and therefore an antimony atom has 51 electrons.

The atomic number of ¹²⁰Sn is 50 and so a ¹²⁰Sn atom contains 50 electrons.

Therefore, the energy required for removing a proton from a ¹²¹Sb nucleus will be

$$-Q = \left(\left(m \left({}^{120} \text{Sn} \right) - 50m_e \right) + m \left(p \right) - \left(m \left({}^{121} \text{Sb} \right) - 51m_e \right) \right) c^2$$

= $\left(m \left({}^{120} \text{Sn} \right) + m \left({}^{1} \text{H} \right) - m \left({}^{121} \text{Sb} \right) \right) c^2$
= $\left(119.9022 + 1.007825 - 120.9038 \right) \text{u}c^2$
= $0.006225 \text{ u}c^2 = 0.006225 \text{ u}c^2 \times 931.5 \text{ MeV}$
= $5.798 \text{ MeV}.$

(b)

We have to calculate the energy needed to remove a proton from a ¹²⁰Sn nucleus. We note that the atomic number of indium ¹¹⁹In is 49 and so an ¹¹⁹In atom contains 49 electrons.

Therefore, the energy required for removing a proton from a ¹²⁰Sn nucleus will be

$$-Q = \left(\left(m \left({}^{119} \text{ In} \right) - 49m_e \right) + m \left(p \right) - \left(m \left({}^{120} \text{ Sn} \right) - 50m_e \right) \right) c^2$$

= $\left(m \left({}^{119} \text{ In} \right) + m \left({}^{1} \text{ H} \right) - m \left({}^{120} \text{ Sn} \right) \right) c^2$
= $\left(118.9058 + 1.007825 - 119.9022 \right) \text{u}c^2$
= $0.011425 \text{ u}c^2 = 0.011425 \text{ u}c^2 \times 931.5 \text{ MeV}$
= $10.639 \text{ MeV}.$

We note that ¹²⁰Sn nucleus contains 50 protons, which is a magic nucleon number. Therefore, ¹²⁰Sn nucleus, which requires 10.6 MeV for removing a proton form it, is more stable than ¹²¹Sb nucleus, which requires 5.8 MeV for removing a proton from it.

