Problem 54.77 (RHK)

We consider the reaction X(a,b)Y, in which X is taken to be at rest in the laboratory reference frame. The initial kinetic energy in this frame is

$$K_{\rm lab} = \frac{1}{2} m_a v_a^2.$$

We have to show (a) that the initial velocity of the centre of mass is of the system in the laboratory frame is

$$V = v_a \left(\frac{m_a}{m_X + m_a} \right).$$

We have to answer whether this quantity is changed by the reaction. (b) We have to show that the initial kinetic energy, viewed now in a reference attached to the centre of mass of the two particles, is given by

$$K_{\rm cm} = K_{\rm lab} \left(\frac{m_X}{m_X + m_a} \right).$$

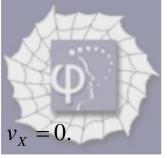
We have to answer whether this quantity is changed by the reaction. (c) In the reaction $^{90}Zr(d,p)^{91}Zr$ the kinetic energy of the deuteron, measured in the laboratory

frame, is 15.9 MeV. We have to find $v_a (= v_d)$, V, and K_{cm} . We may ignore the small relativistic effects.

Solution:

(a)

The centre of mass is defined by the equation


$$X_{\rm cm} = \frac{m_a x_a + m_X x_X}{m_a + m_X}.$$

Therefore, the velocity of the centre of mass $dX_{\rm cm}/dt$

will be

$$V = \frac{m_a v_a}{m_a + m_X},$$

as in the lab frame $v_X = 0$.

The velocity of the centre of mass is a property of the frame of reference and does not change by the reaction.

(b)

In the centre of mass frame, the velocity of the particle *a* will be

$$\begin{split} \left(v_a\right)_{\rm cm} &= v_a - V = v_a - \frac{m_a v_a}{m_a + m_X} \\ &= \frac{m_X v_a}{m_a + m_X}, \end{split}$$

and that of the particle X will be

$$(v_X)_{\rm cm} = -V = -v_a \left(\frac{m_a}{m_X + m_a}\right).$$

Therefore, the kinetic energy in the centre of mass frame will be

$$K_{\text{cm}} = \frac{1}{2} m_a \left(v_a \right)_{\text{cm}}^2 + \frac{1}{2} m_X \left(v_X \right)_{\text{cm}}^2$$

$$= \frac{1}{2} m_a \left(\frac{m_X v_a}{m_a + m_X} \right)^2 + \frac{1}{2} m_X \left(\frac{m_a v_a}{m_a + m_X} \right)^2$$

$$= \frac{1}{2} m_a m_X v_a^2 \frac{\left(m_a + m_X \right)}{\left(m_a + m_X \right)^2}$$

$$= \frac{1}{2} m_a v_a^2 \left(\frac{m_X}{m_X + m_A} \right) = K_{\text{lab}} \left(\frac{m_X}{m_X + m_A} \right).$$

If $Q \neq 0$, the K_{cm} will be changed by the reaction.

(c)

In the reaction 90 Zr(d,p) 91 Zr the kinetic energy of the deuteron, measured in the laboratory frame, is 15.9 MeV. We have to find v_a (= v_d), V, and K_{cm} .

The velocity of the deuteron in the lab frame will be

$$v_{\rm d} = \sqrt{2E_{\rm d}/m_{\rm d}}$$

$$= \left(\frac{2 \times 15.9 \times 1.6 \times 10^{-13}}{2.014102 \times 1.6605 \times 10^{-27}}\right) \,\rm ms^{-1}$$

$$= 3.90 \times 10^7 \,\, ms^{-1}.$$

And, the velocity of the centre of mass will be

$$V = v_d \left(\frac{m_d}{m_{90}_{\text{Zr}} + m_a} \right) = \frac{2}{90 + 2} v_d = 0.0217 \times 3.9 \times 10^7 \text{ ms}^{-1}$$
$$= 8.5 \times 10^5 \text{ ms}^{-1}.$$

The kinetic energy in the centre of mass frame will be

$$K_{\text{cm}} = K_{\text{lab}} \left(\frac{m_{\text{90}}_{\text{Zr}}}{m_{\text{90}}_{\text{Zr}} + m_{\text{d}}} \right) = 15.9 \times \frac{90}{92} \text{ MeV}$$

= 15.55 MeV.