852.

Problem 54.69 (RHK)

A rock, recovered from far underground, is found to contain $860 \mu \mathrm{~g}$ of ${ }^{238} \mathrm{U}, 150 \mu \mathrm{~g}$ of ${ }^{206} \mathrm{~Pb}$, and 1.60 mg of ${ }^{40} \mathrm{Ca}$. We have to calculate the amount of ${ }^{40} \mathrm{~K}$ it is likely to contain. The needed half-lives are as follows:
parent half-life (y) stable end point

${ }^{238} \mathrm{U}$	4.47×10^{9}	${ }^{206} \mathrm{~Pb}$
${ }^{40} \mathrm{~K}$	1.28×10^{9}	${ }^{40} \mathrm{Ca}$

Solution:
We assume that the amount of ${ }^{206} \mathrm{~Pb}$ and ${ }^{40} \mathrm{Ca}$ present in the rock are due to the radio active decays of ${ }^{238} \mathrm{U}$, and ${ }^{40} \mathrm{~K}$, respectively, and were trapped inside the rock in $t \mathrm{y}$ because of the decay of their mother nuclides. We estimate the number of nuclides in $860 \mu \mathrm{~g}$ of ${ }^{238} \mathrm{U}$, $150 \mu \mathrm{~g}$ of ${ }^{206} \mathrm{~Pb}$, and 1.60 mg of ${ }^{40} \mathrm{Ca}$.

$$
N_{238}=\frac{6.02 \times 10^{23} \times 860 \times 10^{-6} \mathrm{~g}}{238 \mathrm{~g}}=2.17 \times 10^{18},
$$

$$
N_{206 \mathrm{~Pb}}=\frac{6.02 \times 10^{23} \times 150 \times 10^{-6} \mathrm{~g}}{206 \mathrm{~g}}=4.38 \times 10^{17}
$$

and

$$
N_{40 \mathrm{Ca}}=\frac{6.02 \times 10^{23} \times 1.60 \times 10^{-3} \mathrm{~g}}{40 \mathrm{~g}}=2.41 \times 10^{19}
$$

We use the radioactive decay law
$N(t)=N(0) e^{-\lambda t}$,
in the following for calculating the age of the rock and the number of nuclides of ${ }^{40} \mathrm{~K}$ that the rock contained when it was formed.

The disintegration constant of ${ }^{238} \mathrm{U}$ decay is

$$
\lambda_{238}=\frac{\ln 2}{4.47 \times 10^{9} \mathrm{y}}=1.55 \times 10^{-10} \mathrm{y}^{-1}
$$

The disintegration constant of ${ }^{40} \mathrm{~K}$ decay is
$\lambda_{40}{ }_{\mathrm{K}}=\frac{\ln 2}{1.28 \times 10^{9} \mathrm{y}}=5.42 \times 10^{-10} \mathrm{y}^{-1}$.
The nuclides of ${ }^{238} \mathrm{U}$ that were there in the rock when it was formed will be the sum of the nuclides of ${ }^{238} \mathrm{U}$ and those of ${ }^{206} \mathrm{~Pb}$ present now. We thus note that

$$
\begin{aligned}
N_{238 \mathrm{U}}(0)=N_{238}(t)+N_{206 \mathrm{~Pb}} & =2.17 \times 10^{18}+4.38 \times 10^{17} \\
& =26.08 \times 10^{17} .
\end{aligned}
$$

Therefore, the age of the rock can be found from the relation

$$
\begin{aligned}
\lambda_{238_{\mathrm{U}}} t=1.55 \times 10^{-10} \times t & =\ln \left(\frac{N_{238_{\mathrm{U}}}(0)}{N_{238_{\mathrm{U}}}(t)}\right) \\
& =\ln \left(\frac{26.08 \times 10^{17}}{21.7 \times 10^{17}}\right),
\end{aligned}
$$

or

$$
1.55 \times 10^{-10} \times t=0.183,
$$

or
$t=\frac{0.183}{1.55} \times 10^{10}=1.18 \times 10^{9}$.
The age of the rock is $1.18 \times 10^{9} \mathrm{y}$.
Let the number of nuclides of ${ }^{40} \mathrm{~K}$ that the rock is likely to contain be $m \mathrm{mg}$. The number of nuclides of ${ }^{40} \mathrm{~K}$ in m mg will be

$$
N_{40_{\mathrm{K}}}(t)=\frac{6.02 \times 10^{23} \times m \times 10^{-3} \mathrm{~g}}{40 \mathrm{~g}}=1.51 \times 10^{19} \mathrm{~m} .
$$

We use again the fact that the sum of nuclides of ${ }^{40} \mathrm{~K}$ and those of ${ }^{40} \mathrm{Ca}$ present now will be the number of nuclides of ${ }^{40} \mathrm{~K}$ present at the time of the formation of the rock, which is $1.18 \times 10^{9} \mathrm{y}$ ago. We have
$e^{\lambda_{40}{ }_{\mathrm{K}}{ }^{t}}=e^{5.42 \times 10^{-10} \times 1.18 \times 10^{0}}=\frac{N_{40_{\mathrm{K}} \mathrm{K}}(0)+N_{40 \mathrm{C}_{\mathrm{Ca}}}(0)}{N_{40_{\mathrm{K}}}(0)}$
or
$e^{0.639}=\frac{1.51 m+2.41}{1.51 m}$,
or
$1.89=1+\frac{1.60}{m}$,
or
$m=\frac{1.60}{0.89}=1.79$.

We find that the amount of ${ }^{40} \mathrm{~K}$ present in the rock is
1.79 mg .

