851.

Problem 54.68 (RHK)

A particular rock is thought to be 260 million years old. If it contains 3.71 mg of ²³⁸U, we have to find how much ²⁰⁶Pb should it contain.

Solution:

A particular rock is thought to be 260 million years old. It contains 3.71 mg of ²³⁸U. Therefore, the number of ²³⁸U nuclides contained in the rock sample will be $N_{^{238}\text{U}} = \frac{6.02 \times 10^{23} \times 3.71 \times 10^{-3} \text{ g}}{238 \text{ g}}$

 $=9.384\times10^{18}$.

The half-life of 238 U for radioactive decay to stable endpoint 206 Pb is 4.47×10^9 y. The disintegration constant will be

$$\lambda_{238_{\rm U}} = \frac{\ln 2}{4.47 \times 10^9 \times 3.156 \times 10^7 \text{ s}} = 4.91 \times 10^{-18} \text{ s}^{-1}.$$

The number of ²³⁸U nuclides in the rock sample 260 million years ago will be

$$N_{238_{\rm U}} \exp(\lambda t)$$

= 9.384×10¹⁸×exp(4.91×10⁻¹⁸×260×10⁶×3.156×10⁷)
= 9.384×10¹⁸×exp(0.0403) = 9.769×10¹⁸.

The number of ²⁰⁶Pb nuclides in the rock sample will therefore be

$$N_{238_{\rm U}} \exp(\lambda t) - N_{238_{\rm U}} = 9.769 \times 10^{18} - 9.384 \times 10^{18}$$
$$= 0.385 \times 10^{18}.$$

The amount in g of the ²⁰⁶Pb in the rock sample will be

$$m_{206_{\rm Pb}} = \frac{206 \times 0.385 \times 10^{18}}{6.02 \times 10^{23}} \text{ g} = 0.13 \text{ mg}.$$