851.

Problem 54.68 (RHK)

A particular rock is thought to be 260 million years old. If it contains 3.71 mg of ${ }^{238} \mathrm{U}$, we have to find how much ${ }^{206} \mathrm{~Pb}$ should it contain.

Solution:

A particular rock is thought to be 260 million years old.
It contains 3.71 mg of ${ }^{238} \mathrm{U}$. Therefore, the number of ${ }^{238} \mathrm{U}$ nuclides contained in the rock sample will be

$$
\begin{aligned}
N_{238} & =\frac{6.02 \times 10^{23} \times 3.71 \times 10^{-3} \mathrm{~g}}{238 \mathrm{~g}} \\
& =9.384 \times 10^{18} .
\end{aligned}
$$

The half-life of ${ }^{238} \mathrm{U}$ for radioactive decay to stable endpoint ${ }^{206} \mathrm{~Pb}$ is $4.47 \times 10^{9} \mathrm{y}$. The disintegration constant will be

$$
\lambda_{238}=\frac{\ln 2}{4.47 \times 10^{9} \times 3.156 \times 10^{7} \mathrm{~s}}=4.91 \times 10^{-18} \mathrm{~s}^{-1} .
$$

The number of ${ }^{238} \mathrm{U}$ nuclides in the rock sample 260 million years ago will be

$$
\begin{aligned}
& N_{238} \exp (\lambda t) \\
& \quad=9.384 \times 10^{18} \times \exp \left(4.91 \times 10^{-18} \times 260 \times 10^{6} \times 3.156 \times 10^{7}\right) \\
& \quad=9.384 \times 10^{18} \times \exp (0.0403)=9.769 \times 10^{18} .
\end{aligned}
$$

The number of ${ }^{206} \mathrm{~Pb}$ nuclides in the rock sample will therefore be

$$
\begin{aligned}
N_{238} \exp (\lambda t)-N_{238} & =9.769 \times 10^{18}-9.384 \times 10^{18} \\
& =0.385 \times 10^{18} .
\end{aligned}
$$

The amount in g of the ${ }^{206} \mathrm{~Pb}$ in the rock sample will be $m_{206 \mathrm{~Pb}}=\frac{206 \times 0.385 \times 10^{18}}{6.02 \times 10^{23}} \mathrm{~g}=0.13 \mathrm{mg}$.

