842.

Problem 54.52 (RHK)

Some radionuclides decay by capturing one of their own atomic electrons, a K-electron, say. An example is

$$
{ }^{49} \mathrm{~V}+e^{-} \rightarrow{ }^{49} \mathrm{Ti}+v \quad t_{1 / 2}=331 \mathrm{~d} .
$$

(a) We have to show that the disintegration energy Q for this process is given by

$$
Q=\left(m_{\mathrm{V}}-m_{\mathrm{Ti}}\right) c^{2}-E_{K},
$$

where m_{v} and m_{Ti} are the atomic masses of ${ }^{49} \mathrm{~V}$ and ${ }^{49} \mathrm{Ti}$, respectively, and E_{K} is the binding energy of the vanadium K-electron.
(b) We have to find the disintegration energy Q for the decay of ${ }^{49} \mathrm{~V}$ by K -electron capture. The needed data are $m_{\mathrm{v}}=48.948517 \mathrm{u}, \quad m_{\mathrm{Ti}}=48.94781 \mathrm{u}, \quad$ and $E_{K}=5.47 \mathrm{keV}$.

Solution:

We have to find the disintegration energy Q for the decay of ${ }^{49} \mathrm{~V}$ by K-electron capture. The beta decay process is
${ }^{49} \mathrm{~V}+e^{-} \rightarrow{ }^{49} \mathrm{Ti}+v$.
We denote by m_{V} and m_{Ti} the atomic masses of
${ }^{49} \mathrm{~V}$ and ${ }^{49} \mathrm{Ti}$, respectively, and let E_{K} be the binding
energy of the vanadium K-electron. We denote by $m_{\mathrm{v}}{ }^{\prime}$ the mass of the ${ }^{49} \mathrm{~V}$ nucleus, and by $m_{\mathrm{Ti}}{ }^{\prime}$ the mass of the ${ }^{49} \mathrm{Ti}$ nucleus.

The Q value for the beta decay of ${ }^{49} \mathrm{~V}$ nucleus by electron capture will therefore be

$$
\begin{aligned}
Q & =\left(m_{\mathrm{V}}{ }^{\prime}+m_{e}-m_{\mathrm{Ti}}^{\prime}\right) c^{2} \\
& =\left(m_{\mathrm{V}}{ }^{\prime}+m_{e}+22 m_{e}\right) c^{2}-\left(m_{\mathrm{Ti}}^{\prime}+22 m_{e}\right) c^{2} \\
& =\left(m_{\mathrm{V}} c^{2}-E_{K}\right)-m_{\mathrm{Ti}} c^{2} .
\end{aligned}
$$

We have used the result that m_{v} atom has 23 electrons and m_{Ti} atom has 22 electrons. We have ignored the differences in the binding energies of the atomic electrons in m_{V} atom and those in m_{Ti} atom, except by taking into account that the extra electron in m_{V} atom has less energy by an amount E_{K}, as the energy in the K shell is $-E_{K}$.
(b)

We use the data for calculating the Q for the beta decay of ${ }^{49} \mathrm{~V}$ by K-electron capture. We have

$$
\begin{aligned}
Q & =\left(m_{\mathrm{V}}-m_{\mathrm{Ti}}\right) c^{2}-E_{K} \\
& =(48.948517 \mathrm{u}-48.94781 \mathrm{u}) c^{2}-5.47 \mathrm{keV} \\
& =0.000707 \times 931.5 \mathrm{MeV}-5.47 \mathrm{keV} \\
& =658.57 \mathrm{keV}-5.47 \mathrm{keV}=653.1 \mathrm{keV}
\end{aligned}
$$

