842.

Problem 54.52 (RHK)

Some radionuclides decay by capturing one of their own atomic electrons, a K-electron, say. An example is

 $^{49}\text{V} + e^- \rightarrow ^{49}\text{Ti} + \nu \quad t_{1/2} = 331 \text{ d.}$

(a) We have to show that the disintegration energy Q for this process is given by

$$Q = (m_{\rm V} - m_{\rm Ti})c^2 - E_K,$$

where $m_{\rm V}$ and $m_{\rm Ti}$ are the atomic masses of
⁴⁹ V and ⁴⁹ Ti, respectively, and E_K is the binding energy
of the vanadium K-electron.
(b) We have to find the disintegration energy Q for the
decay of ⁴⁹ V by K-electron capture. The needed data are
 $m_{\rm V} = 48.948517$ u, $m_{\rm Ti} = 48.94781$ u, and
 $E_K = 5.47$ keV.

Solution:

We have to find the disintegration energy Q for the decay of ⁴⁹V by *K*-electron capture. The beta decay process is

 $^{49}\text{V} + e^- \rightarrow ^{49}\text{Ti} + \nu$.

We denote by $m_{\rm V}$ and $m_{\rm Ti}$ the atomic masses of ⁴⁹V and ⁴⁹Ti, respectively, and let E_K be the binding energy of the vanadium *K*-electron. We denote by $m_{\rm V}$ ' the mass of the ⁴⁹V nucleus, and by $m_{\rm Ti}$ ' the mass of the ⁴⁹Ti nucleus.

The Q value for the beta decay of ⁴⁹V nucleus by electron capture will therefore be

$$Q = \left(m_{\rm V}' + m_e - m_{\rm Ti}' \right) c^2$$

= $\left(m_{\rm V}' + m_e + 22m_e \right) c^2 - \left(m_{\rm Ti}' + 22m_e \right) c^2$
= $\left(m_{\rm V} c^2 - E_K \right) - m_{\rm Ti} c^2$.

We have used the result that $m_{\rm V}$ atom has 23 electrons and $m_{\rm Ti}$ atom has 22 electrons. We have ignored the differences in the binding energies of the atomic electrons in $m_{\rm V}$ atom and those in $m_{\rm Ti}$ atom, except by taking into account that the extra electron in $m_{\rm V}$ atom has less energy by an amount E_K , as the energy in the *K*shell is $-E_K$. (b)

We use the data for calculating the *Q* for the beta decay of ⁴⁹V by K-electron capture. We have $Q = (m_V - m_{Ti})c^2 - E_K$ $= (48.948517 \text{ u} - 48.94781 \text{ u})c^2 - 5.47 \text{ keV}$ $= 0.000707 \times 931.5 \text{ MeV} - 5.47 \text{ keV}$ = 658.57 keV - 5.47 keV = 653.1 keV.

