841.

Problem 54.51 (RHK)

The radionuclide ¹¹C decays according to ${}^{11}C \rightarrow {}^{11}B + e^+ + \nu, \quad t_{1/2} = 20.3 \text{ min.}$

The maximum energy of the positron spectrum is 960.8 keV. We have to show (a) that the disintegration energy Q for this process is given by

$$Q=(m_{\rm C}-m_{\rm B}-2m_{\rm e})c^2,$$

where $m_{\rm C}$ and $m_{\rm B}$ are atomic masses of ¹¹C and ¹¹B, respectively and m_{e} is the electron (positron) mass. (b) given that $m_{\rm C} = 11.011433$ m_B = 11.009305 u, and $m_{e} = 0.0005486$ u, we have to calculate Q and compare it with the maximum energy of the positron spectrum, given above.

Solution:

The radionuclide ¹¹C decays according to

 ${}^{11}\text{C} \rightarrow {}^{11}\text{B} + e^+ + \nu, \quad t_{1/2} = 20.3 \text{ min.}$

The atomic mass of ¹¹C , $m_{\rm C} = 11.011433$ u, the atomic mass of ¹¹B, $m_{\rm B} = 11.009305$ u, and the electron (positron) mass, $m_e = 0.0005486$ u. We may recall that ¹¹C atom has six electrons and that the ¹¹B atom has 5 electrons. In calculating the *Q* value for the decay process ¹¹C \rightarrow ¹¹B + $e^+ + v$ we have to note that it involves the mass of nuclei of these atoms and not their atomic mass. Therefore, *Q* value for the decay process ¹¹C \rightarrow ¹¹B + $e^+ + v$ is given by the equation $Q = ((m_{\rm C} - 6m_e) - (m_{\rm B} - 5m_e) - m_e)c^2$ $= (m_{\rm C} - m_{\rm B} - 2m_e)c^2$. (b)

The value of Q can be found by substituting the values of atomic masses given in the data. We find

$$Q = (m_{\rm C} - m_{\rm B} - 2m_e)c^2$$

= (11.011433 u - 11.009305 u - 2×0.0005486 u)c²
= 0.0010308 uc²
= 0.0010308×931.5 MeV = 960.2 keV.

We note that there is a slight difference between the maximum energy of the positron spectrum 960.8 keV and the value of Q computed above. The difference is

due to the fact that in calculating the nuclear masses from the atomic masses we have not taken into account the difference in binding energy of the electrons before and after the beta decay.

