840.

Problem 54.50 (RHK)

The radionuclide ³²P decays to ³²S as described by the process ³²P \rightarrow ³²S + $e^- + \overline{v}$. In a particular decay event, a 1.71-MeV electron is emitted, the maximum possible value. We have to find the kinetic energy of the recoiling ³²S atom in this event. The atomic mass of ³²S is 31.97 u.

Solution:

The radionuclide ³²P decays to ³²S as described by the process ³²P \rightarrow ³²S + $e^- + \overline{v}$. Electron is emitted with maximum possible kinetic energy of 1.71 MeV. Therefore, in this situation neutrino is emitted with zero kinetic energy and the recoil of the emitted electron is completely taken by the ³²S atom.

We will use the relativistic energy relation for determining the momentum of the electron having the kinetic energy of 1.71 MeV.

It is expressed by the equation

$$\sqrt{p^2 c^2 + m_e^2 c^4} = KE + m_e c^2.$$

As $m_e c^2 = 0.511 \text{ MeV}$, and KE = 1.71 MeV, we have the equation

$$\sqrt{p^2 c^2 + 0.511^2}$$
 MeV = (1.71+0.511) MeV,
or

$$p^{2}c^{2} = (2.21^{2} - 0.511^{2}) \text{ MeV}^{2} = 4.672 \text{ MeV}^{2}.$$

As the mass of ³²S atom is 31.97 u which is very much larger than the electron mass, its speed will be nonrelativistic. The kinetic energy of the ³²S atom will therefore be

$$= \frac{p^2}{2m_{3_2}} = \frac{p^2 c^2}{2m_{3_2} c^2} = \frac{4.672 \text{ MeV}^2}{2 \times 31.97 \times 931.5 \text{ MeV}}$$
$$= 7.84 \times 10^{-5} \text{ MeV} = 78.4 \text{ eV}.$$