837.

Problem 54.45 (RHK)

Under certain circumstances, a nucleus can decay by emitting a particle heavier than an α particle. Such decays are very rare. Consider the decays

$$
\begin{aligned}
& { }^{223} \mathrm{Ra} \rightarrow{ }^{209} \mathrm{~Pb}+{ }^{14} \mathrm{C} \\
& \text { and } \\
& { }^{223} \mathrm{Ra} \rightarrow{ }^{219} \mathrm{Rn}+{ }^{4} \mathrm{He} .
\end{aligned}
$$

We have to calculate the Q-values for these decays and determine that both are energetically possible. (b) The Coulomb barrier height for a particles in this decay is 30 MeV . We have to find the barrier height for ${ }^{14} \mathrm{C}$ decay.

Atomic masses are
${ }^{223} \mathrm{Ra} 223.018501 \mathrm{u} \quad{ }^{14} \mathrm{C} 14.003242 \mathrm{u}$
${ }^{209} \mathrm{~Pb} 208.981065 \mathrm{u} \quad{ }^{4} \mathrm{He} 4.002603 \mathrm{u}$
${ }^{219} \mathrm{Rn} 219.009479 \mathrm{u}$

Solution:

(a)

We will determine first whether the following reactions are energetically allowed:

$$
{ }^{223} \mathrm{Ra} \rightarrow{ }^{209} \mathrm{~Pb}+{ }^{14} \mathrm{C}
$$

and

$$
{ }^{223} \mathrm{Ra} \rightarrow{ }^{219} \mathrm{Rn}+{ }^{4} \mathrm{He} .
$$

We will use the data on values of the atomic masses given in the statement of the problem.
The Q - value for the reaction ${ }^{223} \mathrm{Ra} \rightarrow{ }^{209} \mathrm{~Pb}+{ }^{14} \mathrm{C}$ is given by

$$
\begin{aligned}
& Q=\left(m\left({ }^{223} \mathrm{Ra}\right)-m\left({ }^{209} \mathrm{~Pb}\right)-m\left({ }^{14} \mathrm{C}\right)\right) c^{2} \\
& =(223.018501-208.981065-14.003242) c^{2} \mathbf{u} \\
& =0.034194 c^{2} \mathrm{u}=0.034194 \times 931.5 \mathrm{MeV} \\
& =31.85 \mathrm{MeV} \text {. }
\end{aligned}
$$

It is positive. Therefore, this reaction is allowed.

The Q - value for the reaction ${ }^{223} \mathrm{Ra} \rightarrow{ }^{219} \mathrm{Rn}+{ }^{4} \mathrm{He}$ is given by

$$
\begin{aligned}
Q & =\left(m\left({ }^{223} \mathrm{Ra}\right)-m\left({ }^{219} \mathrm{Rn}\right)-m\left({ }^{4} \mathrm{He}\right)\right) c^{2} \\
= & (223.018501-219.009479-4.002603) c^{2} \mathrm{u} \\
= & 0.006419 c^{2} \mathrm{u}
\end{aligned}=0.006419 \times 931.5 \mathrm{MeV}, ~=5.979 \mathrm{MeV} .
$$

It is positive. Therefore, this reaction is allowed.
(b)

The atomic number of ${ }^{223} \mathrm{Ra}$ is 88 . It is given that the Coulomb barrier height for α particles in this decay is 30 MeV . Let the radius of ${ }^{223} \mathrm{Ra}$ nucleus be $r \mathrm{~m}$. The Coulomb barrier height for an α particle when it tunnels out of ${ }^{223}$ Ra nucleus is the potential energy between charge $86 e$ and $2 e$ separated by $r \mathrm{~m}$. That is
$\frac{86 e \times 2 e}{4 \pi \varepsilon_{0} r}=30 \mathrm{MeV}$.
We will use the above result for finding the barrier height for ${ }^{14} \mathrm{C}$ decay. As the charge in a ${ }^{14} \mathrm{C}$ nucleus is $6 e$, the height of the barrier for tunnelling of ${ }^{14} \mathrm{C}$ from ${ }^{223} \mathrm{Ra}$ nucleus will be

$$
\frac{82 e \times 6 e}{4 \pi \varepsilon_{0} r}=\frac{30 \times 82 \times 6}{86 \times 2} \mathrm{MeV}=85.8 \mathrm{MeV}
$$

