Problem 54.45 (RHK)

Under certain circumstances, a nucleus can decay by emitting a particle heavier than an α particle. Such decays are very rare. Consider the decays

> ²²³Ra \rightarrow ²⁰⁹Pb + ¹⁴C and ²²³Ra \rightarrow ²¹⁹Rn + ⁴He.

We have to calculate the Q-values for these decays and determine that both are energetically possible. (b) The Coulomb barrier height for α particles in this decay is 30 MeV. We have to find the barrier height for ¹⁴C decay.

Atomic masses are

²²³ Ra 223.018501 u	14 C 14.003242 u
²⁰⁹ Pb 208.981065 u	⁴ He 4.002603 u
²¹⁹ Rn 219.009479 u	

Solution:

(a)

We will determine first whether the following reactions are energetically allowed:

223
Ra $\rightarrow ^{209}$ Pb + 14 C

and

 223 Ra \rightarrow 219 Rn + 4 He.

We will use the data on values of the atomic masses given in the statement of the problem.

The Q-value for the reaction ²²³Ra \rightarrow ²⁰⁹Pb+¹⁴C is given by $Q = (m(^{223}Ra) - m(^{209}Pb) - m(^{14}C))c^{2}$ $= (223.018501 - 208.981065 - 14.003242)c^{2}u$

$$= 0.034194c^{2}u = 0.034194 \times 931.5 \text{ MeV}$$
$$= 31.85 \text{ MeV}.$$

It is positive. Therefore, this reaction is allowed.

The Q-value for the reaction 223 Ra $\rightarrow ^{219}$ Rn + 4 He is given by

$$Q = (m(^{223}Ra) - m(^{219}Rn) - m(^{4}He))c^{2}$$

= (223.018501 - 219.009479 - 4.002603)c^{2}u
= 0.006419c^{2}u = 0.006419 \times 931.5 MeV
= 5.979 MeV.

It is positive. Therefore, this reaction is allowed.

(b)

The atomic number of ²²³Ra is 88. It is given that the Coulomb barrier height for α particles in this decay is 30 MeV. Let the radius of ²²³Ra nucleus be *r* m. The Coulomb barrier height for an α particle when it tunnels out of ²²³Ra nucleus is the potential energy between charge 86 *e* and 2 *e* separated by *r* m. That is

$$\frac{86e \times 2e}{4\pi\varepsilon_0 r} = 30 \text{ MeV}.$$

We will use the above result for finding the barrier height for ¹⁴C decay. As the charge in a ¹⁴C nucleus is 6 e, the height of the barrier for tunnelling of ¹⁴C from ²²³Ra nucleus will be

 $\frac{82e \times 6e}{4\pi\varepsilon_0 r} = \frac{30 \times 82 \times 6}{86 \times 2} \text{ MeV} = 85.8 \text{ MeV}.$

