836.

Problem 43.63E (HRW)

A 5.00 g charcoal sample from an ancient fire pit has a ${ }^{14} \mathrm{C}$ activity of 63.0 disintegrations per minute. A living tree has a ${ }^{14} \mathrm{C}$ activity of 15.3 disintegrations per minute per gram. The half-life of ${ }^{14} \mathrm{C}$ is 5730 y . We have to find how old the charcoal sample is.

Solution:

Let N_{0} be the number of givaldes in a 5.00 g piece of wood before it became appiece of charcoal.

A living tree has a ${ }^{14} \mathrm{C}$ activity of 15.3 disintegrations per minute per gram. Therefore, the activity in 5.00 g piece of wood at time t earlier would have been $R_{0}=15.3 \times 5$ disintrgrations per minute.

The present activity measured in the piece of charcoal, $R(t)$, is 63.0 disintegrations per minute.

We know that variation of disintegration rates with time is given as

$$
R(t)=R_{0} e^{-\lambda t} .
$$

We therefore note that
$-\lambda t=\ln \left(\frac{R(t)}{R_{0}}\right)=\ln \left(\frac{63.0}{15.3 \times 5}\right)=-0.194$,
or
$t=\frac{0.194}{\lambda}$.

The half-life of ${ }^{14} \mathrm{C}$ is 5730 y . Its disintegration constant will be
$\lambda=\frac{\ln 2}{5730 \mathrm{y}}=1.209 \times 10^{-4} \mathrm{y}^{-1}$.
Therefore, the age of the piece of charcoal will be
$t=\frac{0.194}{1.209 \times 10^{-4}} \mathrm{y}=160$

