Problem 54.34 (RHK)

A source contains two phosphorus radionuclides, ${}^{32}P(t_{1/2} = 14.3 \text{ d}) \text{ and } {}^{33}P(t_{1/2} = 25.3 \text{ d}).$ Initially 10.0% of the decays come from ${}^{33}P$. We have to find the time that one has to wait until 90.0% of the decays do so.

Solution:

A source contains two phosphorus radionuclides, ³² P $(t_{1/2} = 14.3 \text{ d})$ and ³³ P $(t_{1/2} = 25.3 \text{ d})$. We calculate first the decay constant for ³² P and ³³ P radionuclides.

$$\lambda_{32_{\rm P}} = \frac{\ln 2}{14.3 \text{ d}} = 4.85 \times 10^{-2} \text{ d}^{-1},$$
$$\lambda_{33_{\rm P}} = \frac{\ln 2}{25.3 \text{ d}} = 2.74 \times 10^{-2} \text{ d}^{-1}.$$

Let the initial number of ${}^{32}P$ and ${}^{33}P$ nuclides be $N_{{}^{32}P}$ and $N_{{}^{33}P}$, respectively.

It is given that initially 10.0% of decays come from 33 P. We can express it in the form of an equation as follows:

$$\frac{\lambda_{33_{\rm P}} N_{33_{\rm P}}}{\lambda_{32_{\rm P}} N_{32_{\rm P}} + \lambda_{33_{\rm P}} N_{33_{\rm P}}} = 0.1 ,$$

or
$$\lambda_{33_{\rm P}} \left(N_{33_{\rm P}} / N_{32_{\rm P}} \right) = 0.1 \lambda_{32_{\rm P}} + 0.1 \lambda_{33_{\rm P}} \left(N_{33_{\rm P}} / N_{32_{\rm P}} \right),$$

or
$$\lambda_{33_{\rm P}} N_{33_{\rm P}} / \lambda_{32_{\rm P}} N_{32_{\rm P}} = 1/9 .$$

Let the time for which one has to wait until 90.0% of the decays come from ³³P be *t* d.

We can express it as an equation using the radioactive

decay law as follows:

$$\frac{\lambda_{33_{\rm P}}N_{33_{\rm P}}e^{-\lambda_{33_{\rm P}}t}}{\lambda_{32_{\rm P}}N_{32_{\rm P}}e^{-\lambda_{32_{\rm P}}t}+\lambda_{33_{\rm P}}N_{33_{\rm P}}e^{-\lambda_{33_{\rm P}}t}}=0.9$$

or

$$\lambda_{33_{\rm P}}e^{-(\lambda_{33_{\rm P}}-\lambda_{32_{\rm P}})t}(N_{33_{\rm P}}/N_{32_{\rm P}})=0.9\lambda_{32_{\rm P}}+0.9\lambda_{33_{\rm P}}e^{-(\lambda_{33_{\rm P}}-\lambda_{32_{\rm P}})t}(N_{33_{\rm P}}/N_{32_{\rm P}}),$$

or

$$0.1 \times e^{-(\lambda_{33_{\rm P}} - \lambda_{32_{\rm P}})t} = \frac{0.9\,\lambda_{32_{\rm P}}}{\lambda_{33_{\rm P}} \times (N_{33_{\rm P}}/N_{32_{\rm P}})},$$

or

$$e^{-(\lambda_{33_{p}}-\lambda_{32_{p}})t} = 9 \times 9,$$

or
 $e^{(4.85-2.74)\times 10^{-2}\times t} = 81,$
or
 $(4.85-2.74)\times 10^{-2}\times t = 4.39,$
or
 $t = 208.$

That is for decays from ³³P nuclide to be 90.0% of the decays of the two nuclides one has to wait for 208 days, if initially it was 10.0%.