831.

## Problem 54.33 (RHK)

 $^{239}$ Pu, atomic mass = 239 u, decays by  $\alpha$  decay with a half-life of 24,100 y. We have to calculate the amount of helium in grams produced by an initially pure 12.0-g sample of  $^{239}$ Pu after 20,000 y. We recall that  $\alpha$ particle is a helium nucleus and has an atomic mass of 4.00 u.

## **Solution:**



<sup>239</sup>Pu, atomic mass = 239 u, decays by  $\alpha$  decay with a half-life of 24,100 y. The decay constant of <sup>239</sup>Pu will therefore be

$$\lambda = \frac{\ln 2}{24,100} \text{ y}^{-1} = 2.876 \times 10^{-5} \text{ y}^{-1}.$$

The atomic mass of  $^{239}$ Pu is 239 u. Therefore, the number of nuclides in a 12.0 g sample of pure  $^{239}$ Pu will be

$$N_0 = \frac{12.0}{239 \times 1.6605 \times 10^{-24}} = 3.02 \times 10^{22}.$$

In 20,000 y the number of  $\alpha$  particles produced by radioactive decay of  $3.02 \times 10^{25}$  <sup>239</sup>Pu nuclides would be given by

$$3.02 \times 10^{22} \left( 1 - e^{-2.876 \times 10^{-5} \times 2.0 \times 10^{4}} \right)$$
  
= 3.02 \times 10^{22} \left( 1 - e^{-0.5752} \right)  
= 3.02 \times 10^{22} \left( 1 - 0.562 \right) = 1.32 \times 10^{22}

As  $\alpha$  particle is a helium nucleus and has an atomic mass of 4.00 u the amount of helium produced by 12.0 g of <sup>239</sup>Pu in 20,000 y will therefore be  $1.32 \times 10^{22} \times 4 \times 1.6605 \times 10^{-24}$  g = 8.77 × 10<sup>-2</sup> g.