830.

Problem 54.32 (RHK)

A 1.00-g sample of samarium emits α particles at a rate of 120 particles per second. ¹⁴⁷Sm, whose natural abundance in bulk samarium is 15.0%, is the responsible isotope. We have to calculate the half-life of this isotope.

Solution:

The molar mass of samarium, $M_{Sa} = 150.35 \text{ g mol}^{-1}$. Therefore, the number of atoms in 1.00 g sample of samarium will be $6.02 \times 10^{23}/150.35 = 4.00 \times 10^{21}$.

It is given that the natural abundance of ¹⁴⁷Sm in bulk samarium is 15.0%.

Therefore, 1.00 g of natural samarium will contain 6.0×10^{20147} Sm nuclides. As the observed decay rate of α particles in 1.00 g of samarium is 120 per second, the decay constant of ¹⁴⁷ Sm will be

$$\lambda = \frac{120}{6.00 \times 10^{20}} \, \mathrm{s}^{-1} = 2.0 \times 10^{-19} \, \mathrm{s}^{-1}.$$

The half-life of α particle decay of ¹⁴⁷Sm will therefore be $t_{1/2} = (\ln 2/2.0 \times 10^{-19})$ s = 3.46×10¹⁸ s.

As $1 \text{ y} = 3.156 \times 10^7 \text{ s}$, the half-life of α particle decay of ¹⁴⁷Sm will be 1.09×10^{11} y.

