828.

Problem 54.25 (RHK)

A radioactive isotope of mercury, ${ }^{197} \mathrm{Hg}$, decays into gold, ${ }^{197} \mathrm{Au}$, with a decay constant of $0.0108 \mathrm{~h}^{-1}$. (a) We have to calculate its half-life, (b) the fraction of the original amount that will remain after three half-lives, after 10 days.

Solution:

(a)

A radioactive isotope

Hg , decays into gold, ${ }^{197} \mathrm{Au}$, with a decay constant of $0.0108 \mathrm{~h}^{-1}$. Halflife and decay constants by definition are related as $\frac{1}{2}=e^{-\lambda t / / 2}$.
$\therefore \lambda t_{1 / 2}=\ln 2$,
and
$t_{1 / 2}=\frac{\ln 2}{\lambda}$.
As $\lambda=0.0108 \mathrm{~h}^{-1}$,
$t_{1 / 2}=\frac{\ln 2}{0.0108} \mathrm{~h}=64.18 \mathrm{~h}$.
(b)

The fraction of the original amount that will remain after three half-lives will be
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{3}=0.125$.
And, the fraction of the original amount that will remain after 10 days will be

$$
\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / t_{1 / 2}}=\left(\frac{1}{2}\right)^{240 / 64.18}=\left(\frac{1}{2}\right)^{3.739}=0.0749
$$

