820.

Problem 54.4 (RHK)

When an α particle collides elastically with a nucleus, the nucleus recoils. A $5.00-\mathrm{MeV} \alpha$ particle has a head-on elastic collision with a gold nucleus, initially at rest. We have to find the kinetic energy (a) of the recoiling nucleus and (b) of the rebounding α particle. The mass of the α particle may be taken to be 4.00 u and that of the gold nucleus 197 u. $1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$.

Solution:

We will use principles of conservation of energy and momentum for answering this problem. Let M be the mass of gold nucleus and m be the mass of α particle. Let E be the kinetic energy of the incident α particle, and let P be the momentum of the recoiling gold nucleus and let p be the momentum of the rebounding α particle. As the collision is elastic we will require that the sum of the kinetic energies of the recoiling gold nucleus and the
rebounding α particle be equal to the kinetic energy of the incident α particle.

Momentum of the incident α particle, $p_{i}=(2 m E)^{1 / 2}$.
From the conservation of momentum we get the following equation:
$(2 m E)^{1 / 2}=P-p$.
And from the conservation of energy, we get the following equation:

$$
\frac{P^{2}}{2 M}+\frac{p^{2}}{2 m}=E .
$$

From the above two equations, after algebraic simplification, we get

$$
P\left((m+M) P-2 M(2 m E)^{1 / 2}\right)=0
$$

There are two solutions for P. The first one $P=0$ implies that the gold nucleus continues to remain at rest after collision with the α particle, which contradicts the statement of the problem. We therefore select the second solution

$$
P=\frac{2 M}{m+M}(2 m E)^{1 / 2} .
$$

We substitute the data:
$m=4.0 \mathrm{u}$,
$M=197 \mathrm{u}$,
and
$E=5.00 \mathrm{MeV}=5.0 \times 1.6 \times 10^{-13} \mathrm{~J}$.
We find

$$
\begin{aligned}
P & =\frac{2 \times 197}{4+197} \times\left(2 \times 4 \times 1.66 \times 10^{-27} \times 5.0 \times 1.6 \times 10^{-13}\right)^{1 / 2} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\
& =20.19 \times 10^{-20} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

The kinetic energy of the recoiling gold nucleus will therefore be

$$
\begin{aligned}
K E_{\text {gold nucleus }}=\frac{P^{2}}{2 M} & =\frac{\left(20.19 \times 10^{-20}\right)^{2}}{2 \times 197 \times 1.66 \times 10^{-27}} \mathrm{~J} \\
& =6.23 \times 10^{-14} \mathrm{~J} \\
& =\frac{6.23 \times 10^{-14}}{1.6 \times 10^{-13}} \mathrm{MeV}=0.39 \mathrm{Mev}
\end{aligned}
$$

From conservation of energy, we note that the kinetic energy of the rebounding α particle will be

$$
K E_{\text {rebounding } \alpha \text { particle }}=(5.0-0.39) \mathrm{MeV}=4.61 \mathrm{MeV}
$$

