810.

Problem 53.38 (RHK)

A sample of pure germanium has one impurity atom to 1.3×10^{9} atoms of germanium. We have to calculate the distance between impurity atoms.

Solution:

From the physical data of germanium we calculate the number of germanium atoms per cubic meter. The physical data for germanium are:
molar mass of germanium, $M_{\mathrm{Ge}}=72.61 \mathrm{~g} \mathrm{~mol}^{-1}$, density of germanium, $\rho_{\mathrm{Ge}}=5.323 \mathrm{~g} \mathrm{~cm}^{-3}$.

Therefore, the number of germanium atoms per cubic meter is given by

$$
\begin{aligned}
n_{\mathrm{Ge}}=\frac{N_{A} \rho_{\mathrm{Ge}}}{M_{\mathrm{Ge}}} & =\frac{6.02 \times 10^{23} \mathrm{~mol}^{-1} \times 5.323 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}}{72.61 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}} \\
& =4.41 \times 10^{28} \mathrm{~m}^{-3} .
\end{aligned}
$$

It is given that a sample of pure germanium has one impurity atom to 1.3×10^{9} atoms of germanium.

Therefore, the number of impurity atoms per cubic meter in that sample of germanium will be

$$
\frac{4.41 \times 10^{28}}{1.3 \times 10^{9}}=3.39 \times 10^{19}
$$

Therefore, the average distance between impurity atoms will be

$$
a=\left(\frac{1}{3.39 \times 10^{19}}\right)^{1 / 3} \mathrm{~m}=3.09 \times 10^{-7} \mathrm{~m}=309 \mathrm{~nm} .
$$

