794.

Problem 53.8(RHK)

We have to prove that the occupancy probabilities for two states whose energies are equally spaced above and below the Fermi energy add up to one.

Solution:

The occupation probability in Fermi-Dirac statistics is

$$
p=\frac{1}{\exp \left(\left(E-E_{F}\right) / k T\right)+1},
$$

where E_{F} is the Fermi energy
Let $\left|E-E_{F}\right|=\Delta$. We have

$$
\begin{aligned}
p\left(E_{F}+\Delta\right)+p\left(E_{F}-\Delta\right) & =\frac{1}{(\exp (\Delta / k T)+1)}+\frac{1}{\exp (-\Delta / k T)+1} \\
& =\frac{2+\exp (\Delta / k T)+\exp (-\Delta / k T)}{(\exp (\Delta / k T)+1)(\exp (-\Delta / k T)+1)} \\
& =1 .
\end{aligned}
$$

