790.

Problem 53.4 (RHK)

We have to find the pressure for an ideal gas of molecules to have the same density as that of the conduction electrons in copper, $n=8.49 \times 10^{28} \mathrm{~m}^{-3}$. We may assume that $T=297 \mathrm{~K}$.

Solution:

The ideal gas equation is
$p=n k T$.
As the ideal gas of molecules has the same density as that of the conduction electrons in copper, $n=8.49 \times 10^{28} \mathrm{~m}^{-3}$. The temperature of the gas is $T=297$ K.

Therefore,

$$
\begin{aligned}
p & =8.49 \times 10^{28} \times 1.38 \times 10^{-23} \times 297 \mathrm{~Pa} \\
& =3.48 \times 10^{8} \mathrm{~Pa} .
\end{aligned}
$$

As $1 \mathrm{~Pa}=9.869 \times 10^{-6} \mathrm{~atm}$, we find

$$
\begin{aligned}
p & =3.48 \times 10^{8} \times 9.869 \times 10^{-6} \mathrm{~atm} \\
& =34.3 \times 10^{2} \mathrm{~atm}
\end{aligned}
$$

