783.

Problem 52.33 (RHK)

A high powered laser beam $(\lambda=600 \mathrm{~nm})$ with a beam diameter of 11.8 cm is aimed at the Moon, $3.82 \times 10^{5} \mathrm{~km}$ distant. The spreading of the beam is caused only by the diffraction effects. The angular location of the edge of the central diffraction disk is given by

$$
\sin \theta=\frac{1.22 \lambda}{d},
$$

where d is the diameter of the beam aperture. We have to find the diameter of the central diffraction disk at the Moon's surface.

Solution:

For the problem the following data has been given:
Diameter of the beam, $d=12 \mathrm{~cm}$,
Wavelength of the laser bean, $\lambda=600 \mathrm{~nm}$.
Using the result that the angular location of the edge of the central diffraction disk is given by
$\sin \theta=\frac{1.22 \lambda}{d}$,
we calculate the angle of the central diffraction disk. We get

$$
\begin{aligned}
\sin \theta & =\frac{1.22 \times 600 \times 10^{-9} \mathrm{~m}}{12 \times 10^{-2} \mathrm{~m}} \\
& =61 \times 10^{-7} .
\end{aligned}
$$

$\therefore \theta=61 \times 10^{-7} \mathrm{rad}$.
The diameter of the central diffraction disk on the Moon's surface
will be given by
$2 \times$ distance to the Moon $\times \theta=2 \times 3.8 \times 10^{8} \times 61 \times 10^{-7} \mathrm{~m}$

$$
=4.63 \mathrm{~km}
$$

