776.

Problem 52.14 (RHK)

In an x-ray tube an electron moving initially at a speed of $2.73 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ slows down in passing near a nucleus. A single photon of energy 43.8 keV is emitted. We have to find the final speed of the electron. (Relativity must be taken into account; energy imparted to the nucleus may be ignored.)

Solution:

The relativistic energy of an electron moving with speed v is given by the relation

$$
E=\frac{m_{e} c^{2}}{\sqrt{1-(v / c)^{2}}} .
$$

The energy of the electron when it is moving with speed of $2.73 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ will be

$$
\begin{aligned}
E_{i} & =\frac{0.511}{\sqrt{1-\left(2.73 \times 10^{8} / 3 \times 10^{8}\right)^{2}}} \mathrm{MeV} \\
& =1232.5 \mathrm{keV} .
\end{aligned}
$$

The energy of the electron after it has emitted a photon of energy 43.8 keV will be (neglecting energy imparted to the nucleus)

$$
E_{f}=(1232.5-43.8) \mathrm{keV}=1,188.7 \mathrm{keV} .
$$

The speed of the electron after it has emitted the electron will therefore be

$$
\begin{aligned}
1-\left(v_{f} / c\right)^{2} & =\left(\frac{m_{e} c^{2}}{E_{f}}\right)^{2} \\
& =\left(\frac{511}{1188.7}\right)^{2} \\
& =0.1848 .
\end{aligned}
$$

Therefore,
$v_{f}=2.71 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.

