770.

Problem 51.59 (RHK)

For the state $n=2, l=0$, (a) we have to locate the two maxima for the radial probability density curve; and (b) calculate the radial probability density at the two maxima.

Solution:

(a)

The wave function for the state $n=2$ and $l=0$ is

$$
\psi_{200}(r)=\frac{1}{4 \sqrt{2 \pi a^{3}}}(2-r / a) e^{-r / 2 a} .
$$

The radial probability density $P_{r}(r)$ is given by

$$
\begin{aligned}
P_{r}(r) & =\psi_{200}^{2}(r)\left(4 \pi r^{2}\right) \\
& =\frac{1}{8 a}\left(\frac{r}{a}\right)^{2}(2-r / a)^{2} e^{-r / a} .
\end{aligned}
$$

For finding out the maxima of $P_{r}(r)$, we calculate $\frac{d P_{r}(r)}{d r}$.

We find
$\frac{d P_{r}(r)}{d r}=\frac{1}{8 a^{2}}\left(\frac{r}{a}\right)\left(2-\frac{r}{a}\right) e^{-r / a}\left\{4-\frac{6 r}{a}+\left(\frac{r}{a}\right)^{2}\right\}$.
It can be shown that $r=2 a$ is a minimum and the maxima of $P_{r}(r)$ are the roots of the equation
$4-\frac{6 r}{a}+\left(\frac{r}{a}\right)^{2}=0$,
which are

$$
\begin{aligned}
\frac{r}{a} & =3-\sqrt{5}, 3+\sqrt{5} \\
& =0.76,5.24 .
\end{aligned}
$$

(b)

The radial probability density at the first maxima $r=0.76 a$ will be

$$
\begin{aligned}
P_{r}(r=0.76 a) & =\frac{1}{8 a}(0.76)^{2}(2-0.76)^{2} e^{-0.76} \\
& =0.98(\mathrm{~nm})^{-1}
\end{aligned}
$$

where we have used
Bohr radius $a=5.292 \times 10^{-2} \mathrm{~nm}$.
The radial probability density at the first maxima $r=5.24 a$ will be

$$
\begin{aligned}
P_{r}(r=5.24 a) & =\frac{1}{8 a}(5.24)^{2}(2-5.24)^{2} e^{-5.24} \\
& =3.61(\mathrm{~nm})^{-1}
\end{aligned}
$$

