766.

Problem 51.62 (RHK)

For a hydrogen atom in a state with $n=2$ and $l=0$, we have to find the probability of finding the electron somewhere within the smaller of the two maxima of its radial probability density function.

Solution:

The wave function for the state $n=2$ and $l=0$ is
$\psi_{200}(r)=\frac{1}{4 \sqrt{2 \pi a^{3}}}(2-r / a) e^{-r / 2 a}$
The radial probability density $P_{r}(r)$ is given by

$$
\begin{aligned}
P_{r}(r) & =\psi_{200}^{2}(r)\left(4 \pi r^{2}\right) \\
& =\frac{1}{8 a}\left(\frac{r}{a}\right)^{2}(2-r / a)^{2} e^{-r / a} .
\end{aligned}
$$

For finding out the maxima of $P_{r}(r)$, we calculate $\frac{d P_{r}(r)}{d r}$.

We find
$\frac{d P_{r}(r)}{d r}=\frac{1}{8 a^{2}}\left(\frac{r}{a}\right)\left(2-\frac{r}{a}\right) e^{-r / a}\left\{4-\frac{6 r}{a}+\left(\frac{r}{a}\right)^{2}\right\}$.
It can be shown that $r=2 a$ is a minimum and the maxima of $P_{r}(r)$ are the roots of the equation
$4-\frac{6 r}{a}+\left(\frac{r}{a}\right)^{2}=0$,
which are
$\frac{r}{a}=3-\sqrt{5}, 3+\sqrt{5}$.
The smaller of the maxima of the radial probability function is
$a^{\prime}=(3-\sqrt{5}) a=0.76 a$
The probability of finding the electron somewhere within the smaller of the two maxima of its radial probability density function will therefore be

$$
\begin{aligned}
\mathrm{P} & =\int_{0}^{a^{\prime}} \frac{1}{8 a}\left(\frac{r}{a}\right)^{2}(2-r / a)^{2} e^{-r / a} d r \\
& =\frac{1}{8} \int_{0}^{0.76} \xi^{2}(2-\xi)^{2} e^{-\xi} d \xi \\
& =\frac{1}{8} \int_{0}^{0.76}\left(4 \xi^{2}-4 \xi^{3}+\xi^{4}\right) e^{-\xi} d \xi \\
& =1-e^{-0.76}\left(\frac{(0.76)^{4}}{8}+\frac{(0.76)^{2}}{2}+(0.76)+1\right) \\
& =1-(0.47)(0.042+0.29+0.76+1)=1-0.98 \\
& =0.02
\end{aligned}
$$

The probability is 2%.

