763.

Problem 51.56 (RHK)

In the ground state of the hydrogen atom we have to show that the probability P that the electron lies within a sphere of radius r is given by $\mathrm{P}=1-e^{-2 x}\left(1+2 x+2 x^{2}\right)$, in which $x=r / a$. (b) We have to evaluate the probability that, in the ground state, the electron lies within a sphere of radius a.

Solution:

(a)

The radial probability density $P(r)$ in the ground state of the hydrogen atom is given by the expression

$$
P(r)=\frac{4 r^{2}}{a^{3}} e^{-2 r / a},
$$

in which a is the Bohr radius.
Therefore, the probability that the electron lies within a sphere of radius r will be given by the integral

$$
\mathrm{P}=\int_{0}^{r} P(r) d r
$$

We thus have

$$
\begin{aligned}
\mathrm{P}=\int_{0}^{r} P(r) d r & =\frac{4}{a^{3}} \int_{0}^{r} r^{2} e^{-2 r / a} d r \\
& =\frac{4}{a^{3}}\left\{\left(\frac{r^{2} e^{-2 r / a}}{(-2 / a)}\right]_{0}^{r}-\int_{0}^{r} \frac{2 r e^{-2 r / a}}{(-2 / a)} d r\right\} \\
& \left.=\frac{4}{a^{3}}\left\{\begin{array}{l}
\left.\left(\frac{-a}{2}\right)\left(r^{2} e^{-2 r / a}\right)+a\left(\frac{r e^{-2 r / a}}{(-2 / a)}\right]_{0}^{r}\right\} \\
-a \int_{0}^{r} \frac{e^{-2 r / a}}{(-2 / a)} d r \\
\\
\end{array}\right\} \begin{array}{l}
\left.-2\left(\frac{r}{a}\right)^{2} \frac{\left.e^{-2 r / a}-2\left(\frac{r}{a}\right) e^{-2 r / a}\right\}}{-\left(e^{-2 r / a}-1\right)}\right\} \\
\end{array}\right\} .1-e^{-2 r / a}\left(1+2\left(\frac{r}{a}\right)+2\left(\frac{r}{a}\right)^{2}\right)
\end{aligned}
$$

Therefore,
$\mathrm{P}=1-e^{-2 x}\left(1+2 x+2 x^{2}\right)$, where $x=r / a$.
(b)

The probability that the electron lies within a sphere of Bohr radius a will therefore be given by

$x=1$.

$$
\begin{aligned}
\mathrm{P}(a) & =1-e^{-2}(1+2+2) \\
& =1-5 e^{-2}=0.323 .
\end{aligned}
$$

The probability that electron will be found within a sphere of one Bohr radius is 32.3%.

