761.

Problem 40.50P (HRW)

The wave function for the hydrogen atom quantum state, which has n = 2, and $l = m_l = 0$, is

$$\psi_{200}(r) = \frac{1}{4\sqrt{2\pi}} a^{-3/2} \left(2 - \frac{r}{a}\right) e^{-r/2a},$$

in which a is the Bohr radius and the subscript on $\psi(r)$ gives the values of the quantum numbers n, l, m_l . (a) We have to show analytically that $\psi_{200}^2(r)$ has a maximum at r = 4a, and (b) we have to find the radial probability density $P_{200}(r)$ for this state. (c) We have to show that

$$\int_{0}^{\infty} P_{200}(r) dr = 1,$$

and thus that the expression above for the wave function $\psi_{200}(r)$ has been properly normalized.

Solution:

(a)

The wave function for the hydrogen atom quantum state, which has n = 2, and $l = m_l = 0$, is

$$\psi_{200}(r) = \frac{1}{4\sqrt{2\pi}} a^{-3/2} \left(2 - \frac{r}{a}\right) e^{-r/2a}.$$

The square of the wave function $\psi_{200}(r)$ will be

$$\psi_{200}^{2}(r) = \frac{1}{32\pi a^{3}} \left(2 - \frac{r}{a}\right)^{2} e^{-r/a}.$$

We will calculate next $\frac{d\psi_{200}^2(r)}{dr}$.

The condition

$$\frac{d\psi_{200}^2(r)}{dr} = 0$$
 will determine the extremum of the

function
$$\psi_{200}^2(r)$$
. We have $\frac{d\psi_{200}^2}{dr} = \frac{1}{32\pi a^3} \left[2\left(2 - \frac{r}{a}\right)^2 \left(2 - \frac{r}{a}\right)^2 \left(-\frac{1}{a}\right) e^{-r/a} \right]$
$$= -\frac{e^{-r/a}}{32\pi a^4} \left(2 - \frac{r}{a}\right) \left[2 + 2 - \frac{r}{a}\right].$$
The solutions of the equation $\frac{d\psi_{200}^2(r)}{dr} = 0$ are

r = 2a, and r = 4a.

One can show that r = 2a is a minimum and r = 4a is a maximum.

(b)

The radial probability density $P_{200}(r)$ will be

 $4\pi r^2 \psi_{200}^2(r)$ and its expression will be

$$P_{200}(r) = \frac{1}{8a^3} r^2 \left(2 - \frac{r}{a}\right)^2 e^{-r/a}.$$

(c)

We next check the normalization of the wave function $\psi_{200}(r)$ by calculating the integral

$$\int_{0}^{\infty} P_{200}(r) dr.$$

We have

$$\int_{0}^{\infty} P_{200}(r) dr = \int_{0}^{\infty} \frac{1}{8a^{3}} r^{2} \left(2 - \frac{r}{a}\right)^{2} e^{-r/a} dr$$
$$= \frac{1}{8a^{3}} \int_{0}^{\infty} dr \left(4r^{2} + \frac{r^{4}}{a^{2}} - \frac{4r^{3}}{a}\right) e^{-r/a}$$

We evaluate the integral by making the following substitutions:

$$\frac{r}{a} = \xi$$
, and $dr = ad\xi$.
We get

$$\int_{0}^{\infty} P_{200}(r) dr = \frac{1}{8} \int_{0}^{\infty} d\xi e^{-\xi} \left(4\xi^{2} - 4\xi^{3} + \xi^{4} \right)$$
$$= \frac{1}{8} \left(4\Gamma(3) - 4\Gamma(4) + \Gamma(5) \right)$$
$$= \frac{1}{8} \left(4 \times 2! - 4 \times 3! + 4! \right) = \frac{1}{8} \left(8 \right) = 1.$$

