760.

Problem 40.49P (HRW)

We have to show that the average value of r, defined as

$$
\bar{r}=\int_{0}^{\infty} r P(r) d r,
$$

has the value 1.5a. $P(r)$ is the radial probability density for the ground state of the hydrogen atom.

Solution:

The radial probability density for the ground state of the hydrogen atom is
$P(r)=\frac{4}{a^{3}} e^{-2 r / a}$,
where a is the Bohr radius.
Therefore,
$\bar{r}=\int_{0}^{\infty} r P(r) d r=\frac{4}{a^{3}} \int_{0}^{\infty} r^{3} e^{-2 r / a} d r$.
We evaluate the integral by making the following substitutions:
$\frac{2 r}{a}=\xi, d r=\frac{a}{2} d \xi$.
We get
$\bar{r}=\frac{4}{a^{3}}\left(\frac{a}{2}\right)^{4} \int_{0}^{\infty} \xi^{3} e^{-\xi} d \xi=\frac{a}{4} \Gamma(4)=\frac{a}{4} 3!=\frac{6 a}{4}=1.5 a$.

