759.

Problem 40.43P (HRW)

We have to calculate the probability that the electron in the hydrogen atom, in its ground state, will be found between spherical shells whose radii are a and $2 a$, where a is the Bohr radius.

Solution:

The radial probability density $P(r)$ for a hydrogen atom is defined such that $P(r) d r$ gives the probability for the electron to be found in the volume enclosed by concentric spherical shell of radius r and thickness $d r$. For the hydrogen atom in the ground state, we have $P(r)=\frac{4}{a^{3}} r^{2} e^{-2 r / a}$,
in which a is the Bohr radius. We recall that $a=\frac{\mathrm{h}^{2}}{m\left(e^{2} / 4 \pi \varepsilon_{0}\right)}=52.9 \mathrm{pm}$.

Therefore, the probability of finding electron in the volume between the spherical shells of radii a and $2 a$ will be given by the following integral:

$$
\begin{aligned}
P_{a \leq r \leq 2 a} & =\int_{a}^{2 a} P(r) d r=\frac{4}{a^{3}} \int_{a}^{2 a} r^{2} e^{-2 r / a} d r \\
& =\frac{4}{a^{3}}\left\{\left(\frac{r^{2} e^{-2 r / a}}{(-2 / a)}\right]_{a}^{2 a}-\int_{a}^{2 a} \frac{2 r e^{-2 r / a}}{(-2 / a)} d r\right\} \\
& \left.\left.=\frac{4}{a^{3}}\left\{\begin{array}{l}
\left.-\frac{a}{2}\left(4 a^{2} e^{-4}-a^{2} e^{-2}\right)+a\left(\left(\frac{r e^{-2 r / a}}{(-2 / a)}\right]_{a}^{2 a}\right)\right\} \\
-a \int_{a}^{2 a} \frac{e^{-2 r / a} d r}{(-2 / a)} \\
\\
\end{array} \begin{array}{rl}
a^{3} & \frac{4}{2} \\
\left.-\frac{a^{3}}{2}\left(4 e^{-4}-e^{-2}\right)-\frac{a^{2}}{2}\left(2 a e^{-4}-a e^{-2}\right)+\right\} \\
(-2 / a)
\end{array}\right\}\right]_{a}^{2 a \cdots}\right] \\
& =\left\{-2\left(4 e^{-4}-e^{-2}\right)-2\left(2 e^{-4}-e^{-2}\right)-\left(e^{-4}-e^{-2}\right)\right\} \\
& =\left\{-13 e^{-4}+5 e^{-2}\right\}=0.4386 .
\end{aligned}
$$

The probability of finding the electron in the hydrogen atom, in its ground state, between spherical shells whose radii are a and $2 a$ will, therefore, be 43.9%.

