## 757.

## Problem 40.19P (HRW)

The probability density for the region $x>L$ of $a$ square well of width $L, U=0,0<x<L$, and $U=E_{\mathrm{pot}}, x<0, x>L$, drops off exponentially according to

$$
\psi^{2}(x)=C e^{-2 k x}
$$

where $C$ is a constant. (a) We have to show that the wave function $\psi(x)$ is a solution of the one-dimensional form of the Schrödinger's equation, and have to find the value of $k$ for this to be true.

## Solution:

The one-dimensional Schrödinger equation for a particle of mass $m$, energy $E$, moving in the square well potential $U=0,0<x<L, U=E_{\mathrm{pot}}, x<0, x>L$, in the region $x>L$ will be
$\frac{d^{2} \psi}{d x^{2}}-\frac{8 \pi^{2} m}{h^{2}}\left(E_{\mathrm{pot}}-E\right) \psi=0$.
If $\psi^{2}(x)=C e^{-2 k x}$, we have $\psi(x)=C^{\prime} e^{-k x}$.

Substituting $\psi(x)=C^{\prime} e^{-k x}$ in the Schrödinger equation given above, we get
$C^{\prime}\left(k^{2} e^{-k x}-\frac{8 \pi^{2} m}{h^{2}}\left(E_{\mathrm{pot}}-E\right) e^{-k x}\right)=0$.
This implies that
$\left(k^{2}-\frac{8 \pi^{2} m}{h^{2}}\left(E_{\mathrm{pot}}-E\right)\right)=0$.
or
$k^{2}=\frac{8 \pi^{2} m}{h^{2}}\left(E_{\mathrm{pot}}-E\right)$,
and
$k=\sqrt{\frac{8 \pi^{2} m}{h^{2}}\left(E_{\mathrm{pot}}-E\right)}$

