755.

Problem 51.35 (RHK)

Of the three scalar components of \dot{L}, one L_{z}, is quantized. We have to show that the most that can be said about the other two components of \dot{L} is

$$
\sqrt{L_{x}^{2}+L_{y}^{2}}=\sqrt{l(l+1)-m_{l}^{2}} \mathrm{~h}
$$

We note that these two components are not separately quantized. We have to show that

$$
\sqrt{l} \mathrm{~h} \leq \sqrt{L_{x}^{2}+L_{y}^{2}} \leq \sqrt{l(l+1)} \mathrm{h} .
$$

Solution:

In quantum mechanics it is shown that $\hat{L} \cdot \stackrel{\dot{L}}{L}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}$ and one of the components, say, L_{z} can be simultaneously measured and that their values are given by

$$
\stackrel{1}{L} \cdot L=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}=l(l+1) \mathrm{h}^{2}, l=0,1,2,3 . .
$$

and for a given value of l the allowed values of L_{z} are $m_{l} \mathrm{~h}, m_{l}=l, l-1, l-2, . ., 0,1, \ldots . .,-l+1,-l$.

Combining these two results, we note that what can be said about $L_{x}^{2}+L_{y}^{2}$ is that as
$L_{x}^{2}+L_{y}^{2}=\stackrel{\rightharpoonup}{L} \cdot \stackrel{1}{L}-L_{z}^{2}$,
its values can be
$L_{x}^{2}+L_{y}^{2}=l(l+1) \mathrm{h}^{2}-m_{l}^{2} \mathrm{~h}^{2}$,
Or

$$
\begin{aligned}
\sqrt{L_{x}^{2}+L_{y}^{2}} & =\sqrt{l(l+1) \mathrm{h}^{2}-m_{l}^{2} \mathrm{~h}^{2}} \\
& =\sqrt{l(l+1)-m_{l}^{2}} \mathrm{~h}
\end{aligned}
$$

As the maximum value of $\left|m_{l}\right|=l$,
we note that
$\sqrt{L_{x}^{2}+L_{y}^{2}} \geq \sqrt{l(l+1)-l^{2}} \mathrm{~h}$,
or
$l \mathrm{~h} \leq \sqrt{L_{x}^{2}+L_{y}^{2}}$.
As the least value of $\left|m_{l}\right|=0$, we note that
$\sqrt{L_{x}^{2}+L_{y}^{2}} \leq \sqrt{l(l+1)} \mathrm{h}$.
We thus find that
$\sqrt{l} \mathrm{~h} \leq \sqrt{L_{x}^{2}+L_{y}^{2}} \leq \sqrt{l(l+1)} \mathrm{h}$.

