740.

Problem 50.38 (RHK)

A particle is confined between rigid walls separated by a distance L. We have to show that (a) the probability that it will be found within a distance L/3 from one wall is given by

$$
P=\frac{1}{3}\left(1-\frac{\sin (2 \pi n / 3)}{2 \pi n / 3}\right)
$$

We have to evaluate the probability for (b) $n=1$,
(c) $n=2$, (d) $n=3$, and (e) under the assumption of classical physics.

Solution:

(a)

The wave functions of a particle that is trapped in an infinitely deep well of length L are

$$
\psi_{n}(x)=A \sin \left(\frac{n \pi x}{L}\right), n=1,2,3 \ldots
$$

Note that

$$
\psi_{n}(0)=\psi_{n}(L)=0 .
$$

The probability density will be

$$
P_{n}(x)=A^{2} \sin ^{2}\left(\frac{n \pi x}{L}\right) .
$$

We normalise $P_{n}(x)$ by requiring that the probability of finding the particle any where between $x=0$ and $x=L$ has to be one. That is we have the condition
$\int_{0}^{L} P_{n}(x) d x=1$, or
$A^{2} \int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right)=A^{2} \frac{L}{2}=1$,
or
$A=\sqrt{\frac{2}{L}}$.
The normalised probability density function in the state n is therefore

$$
P_{n}(x)=\frac{2}{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) .
$$

The probability of finding the particle within a distance $L / 3$ from one wall will therefore be

$$
\begin{aligned}
P=\int_{0}^{L / 3} P_{n}(x) d x & =\frac{2}{L} \int_{0}^{L / 3} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \\
& =\frac{1}{L} \int_{0}^{L / 3}\left(1-\cos \left(\frac{2 n \pi x}{L}\right)\right) d x \\
& =\frac{1}{L}\left(\frac{L}{3}-\frac{L}{2 n \pi} \sin \left(\frac{2 n \pi}{3}\right)\right) \\
& =\frac{1}{3}\left(1-\frac{\sin (2 n \pi / 3)}{2 n \pi / 3}\right)
\end{aligned}
$$

(b)

The probability for $n=1$ will be
$P=\frac{1}{3}\left(1-\frac{\sin (2 \pi / 3)}{2 \pi / 3}\right)=0.19$.
(c)

The probability for $n=2$ will be

$$
P=\frac{1}{3}\left(1-\frac{\sin (4 \pi / 3)}{4 \pi / 3}\right)=0.40
$$

(d)

The probability for $n=3$ will be

$$
P=\frac{1}{3}\left(1-\frac{\sin (6 \pi / 3)}{6 \pi / 3}\right)=0.33 .
$$

(e)

Under the assumption of classical physics, the probability of finding a particle that is trapped between rigid walls separated by a length L will be uniform, and therefore the probability of finding the particle within a distance $L / 3$ from one wall will be
$P=0.33$.

