738.

Problem 50.34 (RHK)

We consider a conduction electron in a cubical crystal of a conducting material. Such an electron is free to move throughout the volume of the crystal but cannot escape to the outside. It is trapped in a three-dimensional infinite well. The electron can move in three dimensions, so that its total energy is given by

$$
E_{n_{1}, n_{2}, m_{3}}=\frac{h^{2}}{8 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right),
$$

in which n_{1}, n_{2}, n_{3} each take on the values $1,2, \ldots$ We have to calculate the energies of the lowest five distinct states for a conducting electron moving in a cubical crystal of edge length $L=250 \mathrm{~nm}$.

Solution:

The total energy of an electron moving in a cubical crystal of edge length L is given by the equation

$$
E_{n_{1}, n_{2}, n_{3}}=\frac{h^{2}}{8 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right),
$$

in which n_{1}, n_{2}, n_{3} each take on the values $1,2, \ldots$.

Therefore, the lowest energy five distinct states will have the quantum numbers
$n_{1}, n_{2}, n_{3}=(1,1,1),(2,1,1),(1,2,1),(1,1,2),(2,2,1)$
It is given that $L=250 \mathrm{~nm}$.
We note that

$$
\begin{aligned}
\frac{h^{2}}{8 m L^{2}} & =\frac{\left(6.63 \times 10^{-34}\right)^{2}}{8 \times 9.11 \times 10^{-31} \times\left(250 \times 10^{-9}\right)^{2}} \mathrm{~J} \\
& =9.65 \times 10^{-25} \mathrm{~J} \\
& =\frac{9.65 \times 10^{-25}}{1.6 \times 10^{-19}} \mathrm{eV}=6.0 \mu \mathrm{eV} .
\end{aligned}
$$

Therefore, the energies of the lowest five distinct states will be
$E_{1,1,1}=18.0 \mu \mathrm{eV}$,
$E_{2,1,1}=E_{1,2,1}=E_{1,1,2}=36.0 \mu \mathrm{eV}$,
and

$$
E_{2,2,1}=54 \mu \mathrm{eV} .
$$

