701.

Problem 48.23 (RHK)

We may assume that a parallel of circularly polarized light whose power is 106 W is absorbed by an object. (a) We have to find the rate at which angular momentum is transferred to the object. (b) Assuming that the object is a flat disk of diameter 5.20 mm and mass 9.45 mg , we have to find the time required for the disk to attain an angular speed of $1.50 \mathrm{rev} \mathrm{s}^{-1}$ (we may assume that the disk is free to rotate about its axis). Let the wavelength of the incident light be 516 nm .

Solution

Let v be the frequency of incident light. According to light quantum hypothesis, each photon carries energy $h \nu$, where h is the Planck constant.

The object on which circularly polarized light is incident is a flat disk of diameter 5.20 mm . The power of the beam is 106 W . Therefore, the number
of photons that are incident on the disk per second will be
$N=\frac{106}{h v}$ photons s ${ }^{-1}$.
We will assume that all incident photons are absorbed by the disk. We will use the quantum property that each photon carries angular momentum of magnitude
$l=\frac{h}{2 \pi}$.
Therefore, the total amount of angular momentum transferred to the disk per second by the photons will be

$$
\begin{aligned}
\mathrm{L}=N l & =\frac{106}{h v} \times \frac{h}{2 \pi}, \\
& =\frac{106}{2 \pi \times(c / \lambda)} \mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \\
& =\frac{106}{2 \pi \times\left(3 \times 10^{8} / 516 \times 10^{-9}\right)} \mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \\
& =2.9 \times 10^{-14} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} .
\end{aligned}
$$

Rotational inertia of a circular disk of radius R and mass M is $I=M R^{2} / 2$. When the disk attains angular speed of $1.50 \mathrm{rev} \mathrm{s}^{-1}$, its angular momentum will be

$$
\begin{aligned}
L_{\text {disk }} & =\frac{M}{2} \times \frac{d^{2}}{4} \times 1.50 \times 2 \times \pi \\
& =\frac{3.0 \times \pi \times 9.45 \times 10^{-6} \times\left(5.20 \times 10^{-3}\right)^{2}}{8} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} \\
& =3.01 \times 10^{-10} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}
\end{aligned}
$$

Therefore, the time in which the disk will attain rotational speed of $1.50 \mathrm{rev} \mathrm{s}^{-1}$ will be
$t=\frac{3.01 \times 10^{-10}}{2.9 \times 10^{-14}} \mathrm{~s}=103.8 \times 10^{2} \mathrm{~s}=2.88$ hour.

