699.

Problem 48.20 (RHK)

We have to find the greatest number of quarterwave plates, to be used with the light of wavelength 488 nm , which could be cut from a dolomite crystal 0.250 mm thick.

Solution:

For a dolomite crystal the refractive indices for the ordinary and the extraordinary rays are $n_{o}=1.681$ and $n_{e}=1.500$, respectively.

As we want to cut greatest number of quarter-wave plates from the given thickness of the crystal, we will determine the minimum thickness of the crystal which will produce a phase difference of $\pi / 2$ in a linearly polarized ray after it has passed through the crystal. We assume that the faces of the crystal are parallel to the optic axis. Let x be the thickness of the crystal which will result in a phase difference of $\pi / 2$ between the o-rays and e-rays.

We thus have the following equation from which x can be found:
$\frac{2 \pi x}{\lambda}\left(n_{o}-n_{e}\right)=\frac{\pi}{2}$,
or
$x=\frac{\lambda}{4} \times \frac{1}{\left(n_{o}-n_{e}\right)}=\frac{488}{4 \times(0.181)} \mathrm{nm}=674 \mathrm{~nm}$.
Therefore, the greatest number of quarter-wave plates that can be cut from a dolomite crystal of thickness 0.250 nm will be

$$
N=\frac{0.250 \mathrm{~mm}}{674 \times 10^{-6} \mathrm{~mm}} ; 370 .
$$

