698.

Problem 48.17 (RHK)

Linearly polarized light of wavelength 525 nm strikes, at normal incidence, a wurzite crystal, cut with its faces parallel to the optic axis. We have to find the smallest possible thickness of the crystal if the emergent o-rays and e-rays combine to form linearly polarized light.

Solution:

For wurzite $n_{0}=2.356$ and $n_{e}=2.378$.
Minimum thickness of the crystal required for a linearly polarized light to emerge as a linearly polarized light will be determined by ensuring that the phase difference between the o-rays and e-rays after travelling through the crystal be π.
 Let x be the thickness of the crystal. It is given that the crystal faces are parallel to the optic axis. The e-wavefronts and the o-wavefronts will be as shown in the figure. The
wavelengths of the o-rays and e-rays in the wurzite crystal will be determined by the speeds of the o-rays and the e-rays in the crystal. In terms of the refractive indices n_{o} and n_{e}, we have
$\lambda_{o}=\frac{\lambda}{n_{o}}=\frac{525}{2.356} \mathrm{~nm}=222.8 \mathrm{~nm}$,
and
$\lambda_{e}=\frac{\lambda}{n_{e}}=\frac{525}{2.378} \mathrm{~nm}=220.8 \mathrm{~nm}$.
We want the phase difference between the o-rays and erays to be π. This requirement gives an equation, from which x can be found. It is
$2 \pi\left(\frac{x}{\lambda_{e}}-\frac{x}{\lambda_{o}}\right)=\pi$,
or
$x=\frac{\lambda}{2\left(n_{o}-n_{e}\right)}=\frac{525}{2(2.378-2.356)} \mathrm{nm}=11.9 \mu \mathrm{~m}$.

