Problem 48.6(RHK)

A beam of linearly polarized light strikes two polarizing sheets. The characteristic direction of the second is 90° with respect to the incident light. The characteristic direction of the first is at angle θ with respect to the incident light. We have to find angle θ for a transmitted beam intensity that is 0.100 times the incident beam intensity.

Solution:

Let the intensity of the linearly polarized incident beam be I_{0}. It is given that the characteristic direction of the first is at angle θ with respect to the incident light. By the law of Malus the intensity of the beam after it has passed through the first polarizing sheet will change to $I_{1}=I_{0} \cos ^{2} \theta$.

The characteristic direction of the second polarizing sheet with respect to the first sheet will be $90^{\circ}-\theta$, as the characteristic direction of the second is 90° with respect
to the incident polarized light. The intensity of the transmitted beam when it emerges from the second polarizing sheet will be given by

$$
\begin{aligned}
I_{2}=I_{1} \cos ^{2}\left(90^{\circ}-\theta\right)=I_{1} \sin ^{2} \theta & =I_{0} \cos ^{2} \theta \sin ^{2} \theta \\
& =\frac{I_{0}}{4} \sin ^{2}(2 \theta)
\end{aligned}
$$

It is given that
$I_{2}=0.100 \times I_{0}$.
Therefore,
$\frac{I_{0}}{4} \sin ^{2}(2 \theta)=0.100 \times I_{0}$,
or
$\sin (2 \theta)=\sqrt{0.400}$,
or
$2 \theta=\sin ^{-1} \sqrt{0.400}=0.685 \mathrm{rad}=39.2^{0}$,
and
$\theta=19.6^{0}$.

