## 691.

## Problem 48.5 (RHK)

Three polarizing sheets are stacked. The first and third are crossed; the one between has its axis at $45^{\circ}$ to the axes of the other two. We have to find the fraction of intensity of an unpolarized beam that will be transmitted by the stack.

## Solution:

When the incident unpolarized beam passes through the first polarizing sheet its intensity will be halved.

Therefore, after the unpolarized beam of intensity $I_{0}$ has passed through the first polarizing sheet, the intensity of the beam will become

$$
I_{1}=\frac{1}{2} I_{0} .
$$

As the second polarizing sheet has its axis at $45^{\circ}$ to the axis of the first polarizing sheet, by the law of Malus, we find that intensity of the beam after it has passed through the second sheet will change to

$$
I_{2}=I_{1} \cos ^{2} \theta=\frac{1}{2} I_{0} \cos ^{2} 45^{0}=\frac{1}{4} I_{0} .
$$

As the axis of the third polarizing sheet is at $45^{\circ}$ to the axis of the second polarizing sheet, the intensity of the beam after it has passed through the third sheet will change to
$I_{3}=I_{2} \cos ^{2} \theta=\frac{1}{4} I_{0} \cos ^{2} 45^{\circ}=\frac{1}{8} I_{0}$.
$\therefore \frac{I_{3}}{I_{0}}=\frac{1}{8}$.


