689.

Problem 48.1 (RHK)

The magnetic field equations for an electromagnetic wave in free space are $B_{x}=B \sin (k y+\omega t), B_{y}=B_{z}=0$. We have to find (a) the direction of propagation; (b) write the electric field equation; and (c) find whether the wave is polarized, and, if so, find its direction.

Solution:

(a)

A plane wave characterised by angular frequency ω and propagation vector k can be described by the function $\psi=A \sin (\omega t-\stackrel{1}{k} \cdot \stackrel{\mathrm{r}}{r})$.

The direction of propagation of the wave is that of the propagation vector \hat{k}.

We are given an electromagnetic wave in free space whose magnetic field equations are

$$
B_{x}=B \sin (k y+\omega t), \text { and } B_{y}=B_{z}=0 .
$$

From these functions, we note that the propagation vector for this wave is
$\hat{k}=-\hat{j} k$, where \hat{j} is the unit vector in the y -direction.
Therefore, the direction of propagation of the wave is the negative y-direction.
(b)

We know that the electric field $\stackrel{1}{E}$, the magnetic field $\stackrel{1}{B}$, and the Poynting vector $\stackrel{\dot{S}}{ }$, which is in the direction of the propagation vector \hat{k}, are perpendicular to each other and the definition of the Poynting vector is

$$
\stackrel{\stackrel{\mathrm{r}}{S}}{\mathrm{r}}=\frac{\stackrel{\dot{E}}{E} \times \dot{B}}{\mu_{0}} .
$$

The magnetic field of the wave is in the direction of the unit vector \hat{i}, and its Poynting vector is in the direction $-\hat{j}$, the electric field vector has to be in the direction \hat{k}. In other words the non-zero component of the electric field of the wave will be E_{z}.

The Maxwell's equation connecting the electric and magnetic fields that we can use is

$$
\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\frac{\partial B_{x}}{\partial t} .
$$

Therefore, we have

$$
\frac{\partial E_{z}}{\partial y}=-\frac{\partial B_{x}}{\partial t}=-B \omega \cos (k y+\omega t),
$$

and
$E_{z}=-\frac{\omega}{k} B \sin (k y+\omega t)=-c B \sin (k y+\omega t)$,
as
$\frac{\omega}{k}=c$.
The other components of the electric field of the wave are $E_{x}=E_{y}=0$.
(c)

As the polarization of the wave is determined by its electric field vector $\stackrel{\perp}{E}$, the wave is linearly polarized and its polarization vector is in the \hat{k} direction.

