688.

Problem 47.40 (RHK)

Monochromatic x rays ($\lambda = 0.125 \text{ nm}$) fall on a crystal of sodium chloride, making an angle of 42.2° with the reference line shown in the figure. The interplanar separation is d = 0.252 nm. We have to find the angle through which the crystal must be turned to give a diffracted beam associated with the planes shown. We may assume that the crystal is turned about an axis that is perpendicular to the plane of the plane of the page.

Solution:

Let the Bragg angle for the x rays of wavelength,

 $\lambda = 0.125$ nm, to be reflected from the lattice with interplanar separation d = 0.252 nm, be θ .

Using the Bragg equation, we will find the value of θ . It is given as follows;

$$\sin \theta = \frac{\lambda}{2d} = \frac{0.125 \text{ nm}}{2 \times 0.252 \text{ nm}} = 2.48 \times 10^{-1},$$

and

$$\theta = \sin^{-1}(2.48 \times 10^{-1}) = 2.51 \times 10^{-1} \text{ rad} = 14.36^{\circ}.$$

The crystal will have to be rotated clockwise by $33.4^{\circ}, (90^{\circ} - 42.2^{\circ} - 14.36^{\circ} = 33.4^{\circ})$, so that the angle between the incident x rays and the crystal planes is

14.36° required for Bragg reflection.

