688.

Problem 47.40 (RHK)

Monochromatic x rays $(\lambda=0.125 \mathrm{~nm})$ fall on a crystal of sodium chloride, making an angle of 42.2^{0} with the reference line shown in the figure. The interplanar separation is $d=0.252 \mathrm{~nm}$. We have to find the angle through which the crystal must be turned to give a diffracted beam associated with the planes shown. We may assume that the crystal is turned about an axis that is perpendicular to the filane the page.

Solution:

Let the Bragg angle for the x rays of wavelength, $\lambda=0.125 \mathrm{~nm}$, to be reflected from the lattice with interplanar separation $d=0.252 \mathrm{~nm}$, be θ.

Using the Bragg equation, we will find the value of θ. It is given as follows;
$\sin \theta=\frac{\lambda}{2 d}=\frac{0.125 \mathrm{~nm}}{2 \times 0.252 \mathrm{~nm}}=2.48 \times 10^{-1}$,
and
$\theta=\sin ^{-1}\left(2.48 \times 10^{-1}\right)=2.51 \times 10^{-1} \mathrm{rad}=14.36^{0}$.
The crystal will have to be rotated clockwise by $33.4^{0},\left(90^{0}-42.2^{0}-14.36^{0}=33.4^{0}\right)$, so that the angle between the incident x rays and the crystal planes is 14.36° required for Bragg reflection

