Problem 47.19 (RHK)

White light (400 nm $<\lambda$ <700 nm) is incident on a grating. We have to show that no matter what the value of the grating spacing d is, the second- and third-order spectra will overlap.

Solution:

The grating equation is

$$d\sin\theta = m\lambda$$
, $m = 0, \pm 1, \pm 2,...$

The spread of the visible light in the second- and thirdorder spectra will therefore be

2nd order

$$A = \sin^{-1} \left(\frac{800 \text{ nm}}{d} \right) < \theta < \sin^{-1} \left(\frac{1400 \text{ nm}}{d} \right).$$

3rd order

$$B = \sin^{-1} \left(\frac{1200 \text{ nm}}{d} \right) < \theta < \sin^{-1} \left(\frac{2100 \text{ nm}}{d} \right).$$

We note that

A I B is not \emptyset . Therefore, the second and third orders of the white light spectra will overlap irrespective of the grating spacing.

