671.

Problem 47.5 (RHK)

Light of wavelength 600 nm is incident normally on a diffraction grating. Two adjacent principal maxima occur at $\sin\theta = 0.20$ and $\sin\theta = 0.30$. The fourth order is missing. (a) We have to find the separation between adjacent slits; (b) the smallest possible individual slit width; and name all orders actually occurring on the screen with the values derived in (a) and (b).

Solution:

The grating equation is

 $d\sin\theta = m\lambda$, $m = 0, \pm 1, \pm 2, \dots$

From the statement of the problem we have two possibilities, either the adjacent principal maxima correspond to m = 1 and 2, or m = 2 and 3. As the adjacent principal maxima occur at $\sin \theta = 0.20$ and $\sin \theta = 0.30$, they correspond to m = 2 and 3. For the equations $d \times 0.2 = 2\lambda$, and $d \times 0.3 = 3\lambda$

are consistent. The wavelength of the monochromatic light is $\lambda = 600$ nm. Therefore, the slit separation is

$$d = \frac{2 \times 600}{0.2}$$
 nm = 6000 nm = 600 µm.

The size of the slit width will be determined by using the information that the 4th order principal maxima is missing. The fourth order principal maximum falls at the position a diffraction minimum produced by the finite width size of slits in the grating. The intensity diffraction envelope is determined by

$$\left(\frac{\sin\alpha}{\alpha}\right)^2$$
, where $\alpha = \frac{\pi a \sin\theta}{\lambda}$.

The value of $\sin \theta$ for the 4th order principal maximum is $\sin \theta = \frac{4 \times 600 \text{ nm}}{6000 \text{ nm}} = 0.4.$

If this angle is to coincide with first diffraction minimum due to the finite width of the slits, we have the condition

$$\alpha = \pi = \frac{\pi a \sin \theta}{\lambda} = \frac{\pi a \times 0.4}{600 \text{ nm}},$$

or

$$a = \frac{600 \text{ nm}}{0.4} = 1500 \text{ nm} = 1.5 \text{ }\mu\text{m}.$$

The second diffraction minimum will occur at

$$\sin\theta = \frac{2\lambda}{a} = \frac{2\times600 \text{ nm}}{1500 \text{ nm}} = 0.8.$$

The order of the grating principal maxima that will coincide with the second diffraction minimum will be given by the condition

$$m = \frac{6000 \times 0.8}{600} = 8.$$

We note that for m = 10, $\sin \theta = 1$. Therefore, principal maxima of order m = 10 and greater will not be seen on the screen.

Therefore, all orders of the principal maxima that will be seen on the screen will be m = 0, 1, 2, 3, 5, 7, and 9.