671.

Problem 47.5 (RHK)

Light of wavelength 600 nm is incident normally on a diffraction grating. Two adjacent principal maxima occur at $\sin \theta=0.20$ and $\sin \theta=0.30$. The fourth order is missing. (a) We have to find the separation between adjacent slits; (b) the smallest possible individual slit width; and name all orders actually occurring on the screen with the values derived in (a) and (b).

Solution:

The grating equation is
$d \sin \theta=m \lambda, \quad m=0, \pm 1, \pm 2, \ldots$.
From the statement of the problem we have two possibilities, either the adjacent principal maxima correspond to $m=1$ and 2 , or $m=2$ and 3 .

As the adjacent principal maxima occur at $\sin \theta=0.20$ and $\sin \theta=0.30$, they correspond to $m=2$ and 3 . For the equations
$d \times 0.2=2 \lambda$,
and
$d \times 0.3=3 \lambda$
are consistent. The wavelength of the monochromatic light is $\lambda=600 \mathrm{~nm}$. Therefore, the slit separation is
$d=\frac{2 \times 600}{0.2} \mathrm{~nm}=6000 \mathrm{~nm}=600 \mu \mathrm{~m}$.
The size of the slit width will be determined by using the information that the $4^{\text {th }}$ order principal maxima is missing. The fourth order principal maximum falls at the position a diffraction minimum produced by the finite width size of slits in the grating. The intensity diffraction envelope is determined by $\left(\frac{\sin \alpha}{\alpha}\right)^{2}$, where $\alpha=\frac{\pi a \sin \theta}{\lambda}$
The value of $\sin \theta$ for the $4^{\text {th }}$ order principal maximum is $\sin \theta=\frac{4 \times 600 \mathrm{~nm}}{6000 \mathrm{~nm}}=0.4$.

If this angle is to coincide with first diffraction minimum due to the finite width of the slits, we have the condition $\alpha=\pi=\frac{\pi a \sin \theta}{\lambda}=\frac{\pi a \times 0.4}{600 \mathrm{~nm}}$,
or
$a=\frac{600 \mathrm{~nm}}{0.4}=1500 \mathrm{~nm}=1.5 \mu \mathrm{~m}$.
The second diffraction minimum will occur at
$\sin \theta=\frac{2 \lambda}{a}=\frac{2 \times 600 \mathrm{~nm}}{1500 \mathrm{~nm}}=0.8$.
The order of the grating principal maxima that will coincide with the second diffraction minimum will be given by the condition
$m=\frac{6000 \times 0.8}{600}=8$.
We note that for $m=10, \sin \theta=1$. Therefore, principal maxima of order $m=10$ and greater will not be seen on the screen.

Therefore, all orders of the principal maxima that will be seen on the screen will be $m=0,1,2,3,5,7$, and 9 .

