670.

Problem 47.3 (RHK)

With light from a gaseous discharge tube incident normally on a grating with distance $1.73 \mu \mathrm{~m}$ between adjacent slit centres, a green line appears with sharp maxima at measured transmission angles $\theta= \pm 17.6^{0}, 37.3^{0},-37.1^{0}, 65.2^{0}$, and -65.0^{0}. We have to compute the wavelength of the green line that best fits the data.

Solution:

A principal maximum occurs when the path difference between rays from any pair of adjacent slits, which is given by $d \sin \theta$, is equal to an integral number of wavelengths, or
$d \sin \theta=m \lambda, \quad m=0, \pm 1, \pm 2, \ldots$.
This is called the grating equation.
In our problem the slit separation d is
$d=1.73 \mu \mathrm{~m}=1730 \mathrm{~nm}$.
The principal maxima at $\theta= \pm 17.6^{0}$ correspond to $m= \pm 1$.

So from this measurement the value of wavelength will be
$\lambda_{1}=1730 \times \sin \left(17.6^{\circ}\right) \mathrm{nm}=523.1 \mathrm{~nm}$.
Also,
$\lambda_{2}=523.1 \mathrm{~nm}$.
The maxima observed at 37.3^{0}, and -37.1^{0} correspond to $m=2,-2$, respectively.

From these observations, we find the value of wavelength to be
$\lambda_{3}=\frac{1}{2} \times 1730 \times \sin 37.3^{0} \mathrm{~nm}=524.2 \mathrm{~nm}$,
and
$\lambda_{4}=\frac{1}{2} \times 1730 \times \sin 37.1^{0} \mathrm{~nm}=521.8 \mathrm{~nm}$.
The maxima observed at 65.2°, and -65.0° correspond to $m=3,-3$, respectively.

From these observations, we find the value of wavelength to be
$\lambda_{5}=\frac{1}{3} \times 1730 \times \sin 65.2^{0}=523.5 \mathrm{~nm}$,
and
$\lambda_{6}=\frac{1}{3} \times 1730 \times \sin 65.0^{\circ}=522.6 \mathrm{~nm}$.
From these measurements, we find the average value of the measured wavelength. It is
$\lambda=523.0 \mathrm{~nm}$.

